Improving the Performance of Distributed
Applications Using Active Networks

Ulana Legedza, David Wetherall and John Guttag *

Software Devices and Systems Group
Laboratory for Computer Science
Massachusetts Institute of Technology

Abstract

An active network allows applications to inject customized
programs into network nodes. This enables faster protocol
innovation by making it easier to deploy new network proto-
cols, even over the wide area. In this paper, we argue that
the ability to introduce active protocols offers important
opportunities for end-to-end performance improvements of
distributed applications.

We begin by describing several active protocols that provide
novel network services and discussing the potential impact
of these kinds of services on end-to-end application perfor-
mance. We then present and analyze the performance of an
active networking protocol that uses caching within the net-
work backbone to reduce load on both servers and backbone
routers.

Keywords: active networks, caching, distributed applica-
tions, networking protocols, performance.

1 Introduction

Traditionally, the function of a network has been to deliver
packets from one endpoint to another. Processing within the
network has been limited largely to routing, simple QOS
(quality of service) schemes, and congestion control. To-
day, however, there is considerable interest in pushing other
kinds of processing into the network. Examples include
the transport-level support for wireless links of snoop-TCP
[1], and the application-specific filtering of network firewalls
[14].

Active networks [24, 23] take this trend to the extreme.
They allow servers and clients to inject customized programs
into the nodes of the network, thus interposing application-
specified computation between communicating endpoints.
In this manner, the entire network may be treated as part

*{ulana,djw,guttag}@Ilcs.mit.edu. http://www.sds.lcs.mit.edu/.
This work was supported by DARPA, monitored by the Office of Naval
Research under contract No. N66001-96-C-8522, and by seed funding
from Sun Microsystems Inc.

0-7803-4383-2/98/$10.00 © 1998 |IEEE.

of the overall system that can be specialized to achieve ap-
plication efficiency.

Of course, it is not a priori obvious that a programmable
network is a good idea. It clearly offers increased flexibility,
but at some cost. Both the advantages and the costs can be
examined along three independent dimensions:

1. Ease of creating and deploying protocols,
2. Impact on network services, and
3. Impact on network performance.

In [27] we addressed the first of these issues. We described
an architecture and a toolkit that facilitates the construc-
tion and deployment of active application-specific protocols.
We presented evidence that it is not terribly difficult to write
active protocols and that the overhead of the support mech-
anisms for running them (including code transfer) is not
prohibitive.

In this paper, we address the other two issues by focus-
ing not on the mechanisms needed to introduce active
application-specific network protocols, but rather on the
protocols themselves. Our goal is to demonstrate two
things:

o There are a variety of useful network services that in-
volve processing at intermediate nodes, and

o The use of such services can lead to better end-to-end
performance for applications.

We sketch a few simple applications of active networks, and
discuss qualitatively how these uses of active networks im-
pact end-to-end application performance. This starts to
make the case for application-specific protocols by suggest-
ing the kinds of things one might do within the network, if it
were easy to do so. We also give a more detailed description
of an in-network caching scheme that exploits some of the
capabilities of active networks.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly describes our active network architecture, and
explains how it allows application-specific protocols to be

deployed. This sets the stage for Sections 3 and 4, the heart
of the paper, in which we discuss how the use of active net-
working technology can lead to performance improvements
and then present a quantitative analysis of a detailed ex-
ample. We contrast our approach with related work in Sec-
tion 5, and conclude in Section 6.

2 Network Architecture

The protocols we consider in this paper are developed in the
context of our active network architecture, called ANTS, and
its prototype implementation. These are described in detail
in {27]. Here we cover only those aspects needed to under-
stand the programming model used to develop protocols.

Our architecture is composed of a set of nodes connected by
point-to-point or shared medium channels. Unlike IP, the
network service provided by ANTS is not fixed - it is flexible.
Different applications are able to introduce new protocols
into the network by specifying the routines to be executed
as programmable network nodes forward messages.

2.1 Protocols and Capsules

To make use of programmable network elements, we require
a model] for combining forwarding routines at individual
nodes into a pattern of behavior — a protocol - that de-
fines the processing to occur across the network as a whole.
In ANTS, this is accomplished with capsules and protocols.

e At the lowest level, a capsule is a generalized replace-
ment for a packet. It includes a reference to the routine
used to forward it at network nodes.

A protocol is a collection of related capsule types that
are treated as a single unit of protection by network
nodes. That is, capsules within a single protocol may
share information that is not accessible by other proto-
cols, and each protocol is presented with its own view
of the network.

Thus protocols are the units by which the network as a
whole is customized by applications. We reference forward-
ing routines from capsules by using a fingerprint (e.g., the
MD5 message digest) of the routines. This scheme allows
protocols to be allocated quickly and in a decentralized fash-
ion, enabling co-operating parties to use their own protocol
by mutual agreement. Further, it greatly reduces the danger
of protocol spoofing because a fingerprint based on a secure
hash is effectively a one-way function that can be verified
without trusting external parties.

In developing protocols, two system requirements restrict
the kinds of processing that may occur at programmable
network elements. First, we require that network-based
processing be transparent to endpoints. This is necessary

591

so that its failure or absence (due to packet or connectiv-
ity loss) does not effect the correctness of the application.
Second, we require that network-based processing be com-
patible with networks in which only some strategic nodes
are programmable. As discussed later, many of the bene-
fits of active protocols can be achieved by installing a few
active nodes at strategic points in the network. We expect
these strategic points to be located at boundaries between
bandwidth-poor and bandwidth-rich parts of the network.

2.2 Active Nodes

A key difficulty in designing an active network is to allow
nodes to execute user-defined programs while preventing un-
wanted interactions. Not only must the network protect it-
self from runaway protocols, but it must offer co-existing
protocols a consistent view of the network and allocate re-
sources between them.

Our approach is to execute protocols within a restricted en-
vironment, that limits their access to shared resources. Ac-
tive nodes are the programmable network elements that play
this role in our architecture. They export a set of primitives
for use by application-defined processing routines, which
combine these primitives using the control constructs of
a programming language. They also supply the resources
shared between protocols and enforce constraints on how
these resources may be used as protocols are executed.

When a capsule arrives at a node, its associated process-
ing routine is run to completion. The routine processes the
payload of the capsule and initiates any further actions, e.g.,
forwarding, that are necessary. During capsule processing,
active nodes are responsible for the integrity of the network
and handle any errors that arise. We associate with each
capsule a resource limit that functions as a generalized TTL
(Time-To-Live) field. This limit is carried with the capsule
and decremented by nodes as resources (bandwidth, pro-
cessing time, and memory) are consumed. When it reaches
zero, the capsule is discarded.

Active nodes also implement a mechanism to propagate code
to where it is needed. Our approach has been to couple the
transfer of code with the transfer of data as an in-band func-
tion. We have designed a scheme that is suited to flows, i.e.,
sequences of capsules that follow the same path and require
the same processing. At end-systems, applications may be-
gin to use a new protocol at any time by registering the code
definition at their local node. As capsules travel through
nodes of the network, a lightweight protocol is used to trans-
fer the capsule programs incrementally from one node to the
next, caching them for future use along the way.

3 Sample Applications

There are many ways to take advantage of computation
within a network. In this paper, we concentrate on four gen-
eral mechanisms: fusion, fission, caching, and delegation. A
fusing node (e.g., a filter) has the potential of forwarding
fewer packets than it receives. A fissioning node has the po-
tential of forwarding more packets than it receives. A proxy
node performs a task delegated to it by another node.

In this section we describe how these techniques can be used
by different applications. We first sketch three examples of
customized active protocols, and then discuss *heir perfor-
mance benefits.

3.1 Active Reliable Multicast

Multicast protocols provide a point-to-group communica-
tion facility; a multicast protocol is reliable if it continues
to try to deliver information until it is received by all mem-
bers of the group.

Providing an efficient and scalable reliable multicast ser-
vice over a wide-area network is a difficult problem; it has
been a topic of considerable recent interest in the network-
ing community [13, 15]. The key challenges include: man-
aging bandwidth utilization of bottleneck links, not over-
loading the sender with retransmission requests, and keep-
ing latency of retransmissions low. At the level of the im-
plementation, these challenges translate into finding mech-
anisms for preventing NACK (negative acknowledgment)
implosion, distributing responsibility for sending retrans-
missions, and limiting the delivery scope of retransmitted
packets.

In existing end-to-end approaches [13, 15|, considerable ef-
fort is made to control NACK implosion and distribute
responsibility for repair, but at the cost of increased re-
transmission latency [13] and/or aggregate bandwidth uti-
lization [15]. None of these approaches offer a particularly
attractive scoping technique. Most of the difficulty stems
from not having a good way to implement a hierarchy using
only endpoint nodes. As a result, new research in “end-to-
end” approaches is exploring the potential improvements to
be gained by expanding the services provided by network
routers [21].

In another paper in these proceedings [17], Lehman presents
an active reliable multicast algorithm, ARM, that takes
fuller advantage of the opportunities afforded by process-
ing within the network. Here, we briefly outline some of the
techniques used, which illustrate several ways of exploiting
active nodes.

The protocol takes advantage of the capabilities of active
nodes to combine reliable multicast processing with the mul-
ticast data distribution tree itself. Active nodes perform the

592

following processing on multicast, NACK and retransmis-
sion packets passing through them:

¢ Duplicate NACKs are suppressed by checking to see
if another NACK with the same sequence number has
been forwarded recently. This prevents implosion at
the source.

A limited amount of multicast data is cached and re-
transmitted downstream when a NACK is intercepted.
This reduces the bandwidth usage and latency of re-
transmissions.

Missing data packets are detected by checking for gaps
in the multicast sequence numbers; when a gap is found
a NACK packet is generated and sent towards the
source. This reduces the latency of retransmissions
since intermediate network nodes both detect loss ear-
lier than the receivers that experience it and are closer
to the needed data.

3.2 Online Auctions

A server running a live online auction collects and processes
client bids for each available item. This server also responds
to requests for the current price of an item. Because of the
network delay experienced by a packet responding to such
a query, its information may be out of date by the time
it reaches a client, possibly causing the client to submit a
bid that is too low to beat the current going price. Thus,
unlike auctioneers in traditional auctions, the auction server
is likely to receive bids that are too low and must be rejected.

Current implementations of such servers [10, 20] perform all
bid processing at the server. Our active protocol filters out
low bids in the network, before they reach the server. When
the server senses that it is heavily loaded, it activates the
filters and periodically updates them with the current price
of the popular item. The filtering active nodes drop bids
not greater than this price and send bid rejection notices to
the appropriate clients. This frees up server resources for
processing competitive bids.

3.3 Mixing Sensor Data

Imagine a situation in which geographically dispersed sen-
sors and receivers are connected over a data network. The
sensors are continuously collecting large amounts of infor-
mation that must be combined for one or more receivers.
These sensors could be microphones collecting audio sig-
nals, antennas collecting radio signals, devices measuring
emissions of pollutants, etc.

A straightforward design is for the network to passively for-
ward each packet of the input streams to each receiver. Each
receiver would then do its own mixing.

An alternative is to use fusion to do some of the mixing
within the network, as suggested in [28]. If multiple in-
put signals pass through the same internal node at approx-
imately the same time, that node can mix the signals. If
the mixed signal is smaller than the sum of its constituents,
this will reduce the total network traffic. It also reduces the
bandwidth and processing needed at the end nodes.

Now, suppose that each sensor is sending its signal to mul-
tiple receivers. If each signal is being multicast to the same
set of receivers, this combines with mixing in a straightfor-
ward way.

If the sets of destination nodes are not identical, a more
complex protocol is neeced. Consider a situation in which
an interior node received signal S1 destined for nodes RI,
R2, R3, Rj; signal S2 destined for nodes R1, R2; and signal
58 destined for nodes B3, R4. It might be productive to first
use fission to split SI into two multicast messages and then
fusion to mix the resulting signals with S2 and S3.

3.4 Performance

The remainder of this section (and most of the next section)
is devoted to evaluating the overall impact of network-based
processing on the performance of applications. Traditional
network performance measures, such as throughput (bits or
packets per second) and packet latency, are aimed at eval-
uating the performance of the network rather than of the
applications. However, there are cases in which network per-
formance is not positively correlated with application per-
formance.

An active network can perform operations that can cause
fewer packets to be sent or delivered and packets to ex-
perience longer latency. While these effects would appear
to degrade performance measured by throughput and in-
dividual packet latencies, they may actually result in im-
proved application performance because of reduced demand
for bandwidth at endpoints, reduced network congestion,
etc. Therefore, performance must be evaluated in terms of
application-specific metrics.

We first consider application-specific notions of throughput.
In the multicast example, cached retransmission reduces the
server’s throughput in terms of packets sent per second, but
increases the number of packets per second successfully re-
ceived at clients. In the active online auction, the relevant
measure could be either the number of bids processed per
second or, perhaps, the total number of winning bids pro-
cessed per second. Both analysis and preliminary experi-
ments with this application indicate that the active imple-
mentation will increase both these measures. For the sen-
sor application, mixing in the network allows an increase
in each sensor’s sample rate or in the number of sources
from which the server can receive and process signals. Pre-
liminary simulation results support this intuition. All of

593

these improvements in throughput are brought about by
the parallelism resulting from the delegation of application
functionality (mixing, bid rejection, retransmission, etc.) to
internal network nodes.

All active processing slows down packets at least somewhat,
but can more than make up for it by improving the latency
of application-level operations. Caching in the network, as
in the auction example, can reduce the latency of data ac-
cesses when the server is busy. When network nodes in the
auction application reject low bids, they inform the “losing”
end nodes more quickly than could the overloaded (and far-
ther away) server. The fission performed in the multicast
and signal mixing example will clearly deliver data to most
destinations more quickly than multiple unicasts.

The cost of these performance improvements is the increased
consumption of computational and storage resources in the
network, which may slow down other network traffic travel-
ing through the busy active nodes. However, this competing
traffic could also benefit from active processing. Because the
active processing in all of the example applications reduces
the application’s bandwidth utilization in some regions of
the network, other traffic will benefit from the resulting re-
duction in congestion-related loss and delays.

Sometimes, doing work within the network also reduces the
total amount of work that needs to be done by an appli-
cation. Consider the mixing example. The active network
implementation offers the opportunity to reduce the work
done at end nodes by more than it increases the work within
the network, i.e., there is a reduction in total work as well as
in endpoint work. Consider a situation in which N sources
send signals to M destinations. If each end node does all
of its own mixing, the work, summed over all end nodes, is
proportional to N*M. In the best case, by mixing pairs of
signals within the network the end nodes can be completely
freed of the need to mix signals. Furthermore, the total

amount of mixing done can be reduced - in the best case to
N.

The degree to which intra-network processing improves per-
formance depends on where in the network it is deployed. In
all our examples, placing processing near a bottleneck link
is likely to decrease delay and loss due to congestion. In the
signal mixing and distribution example, bandwidth utiliza-
tion is decreased the most when fission is performed as late
as possible and fusion as early as possible. In the auction ap-
plication, filters should be far enough away from the server
to turn back low bids as early as possible, but close enough
to the server to get reasonably up to date price information.

4 Caching Within the Network

In the previous section, we briefly looked at three active
protocols and discussed the kinds of performance improve-

ments that might be attained using the techniques they in-
corporate. In this section, we take a much closer look at
the performance of a single active protocol that performs
intra-network caching of rapidly changing data.

We first outline an application for which such caching of-
fers the potential of significant performance improvements,
then describe an active protocol that supports that appli-
cation, and finally evaluate that protocol using simulation
results that compare it to the conventional approach to Web
caching.

4.1 The Application

Consider a server that supplies rapidly changing informa-
tion to a variety of clients with different needs. Military
planning systems, airline flight status systems, and stock
quotation systems are examples of this kind of service. Ob-
taining fast up-to-date information from such such systems
is most important during crisis periods (e.g., wars, snow-
storms, market crashes) which are likely to coincide with
peak load on servers and the network.

Superficially, this looks like the problem that Web caching
already addresses. However, conventional approaches to
caching don’t suffice in this context. First of all, to avoid the
problem of shipping stale data, today’s caches do not store
rapidly changing information such as stock quotes. This
means that long delays and server overload will persist dur-
ing periods of high demand.

Second, the granularity of objects stored in Web caches (i.e.,
entire Web pages) is inappropriate for this application. Dif-
ferent clients will want different kinds and combinations of
data; although there may be a lot of cross-client overlap in
the data requested, there may be little cross-client overlap
in the pages actually delivered. The likelihood of a cache
hit will be small.

In an active network, the caching strategy can be cus-
tomized to deal with these needs. In the next subsection
we describe one way of doing this. For concreteness, we de-
scribe an active protocol designed to support a stock quote
server.

4.2 The Protocol

Quotes are cached at active nodes as they travel from the
server {(or a cache) back to a client. Subsequent client re-
quests are intercepted at the nodes where the local cache is
checked to determine whether the desired quotes are avail-
able. If so, the quotes are sent to the client, where they
are assembled into a viewable format. If not, the request
is forwarded on towards the server. The caches are eas-
ily found because they lie directly in the paths followed by

594

requests traveling towards the server. We believe this ap-
proach of intra-network caching will prove to be more effi-
cient (in terms of latency and bandwidth utilization) than
one which requires requests to be repeatedly redirected to
caches located at network edges/endpoints, as well as less
complex since no additional routes need be calculated.

In order to avoid obtaining stale data, requests also specify
a client-controlled degree of currency of the desired infor-
mation. This allows each client to trade off response-time
and currency as appropriate. For example, a financial plan-
ner may prefer to have instantaneous access to large amount
of slightly out-of-date information, while a trader may pre-
fer to wait for more up-to-date information. To implement
this, each cached quote has a timestamp associated with it
that indicates the time the quote was issued by the server.
When a request capsule arrives at an active node, the quote
cache is actually checked for a suitably current version of
the desired quote.

Our protocol caches information at network nodes using a
small grain size, i.e., on a per quote basis. For simplicity,
we assume that requests for multiple items are partitioned
into separate requests, each of which fits within a single
packet. The results are then assembled at the client. This
enables more requests to hit in the cache, no matter what
combination of stocks is requested.

In our current implementation, each active node stores in
its cache each quote that it forwards. A node never for-
wards a quote that is less current than one for that stock
stored in its cache and the quotes stay in the cache until
they are replaced by a more current quote. Because this
protocol consumes storage resources rather greedily, in fu-
ture implementations we may incorporate a more efficient
space management scheme such as that described in [4].

The request and quote response capsules of our protocol
were implemented using the primitives supplied by ANTS.
The capsule processing routines capture the algorithms in a
straightforward way.

This caching scheme has several potential benefits:
e It can decrease the latency observed by clients,
o It can decrease the traffic at routers, and
o It can decrease the load on the server.

The extent to which these potential benefits are realized de-
pend upon the degree to which the network is successful in
directing requests for data to active nodes that happen to
have a current copy of the data in their cache. Typically, re-
quests for data are routed along a greedy (or shortest path)
to the source for the data. This is not necessarily an optimal
strategy. It is simple to construct examples where routing
data along a shortest path will cause the request to avoid
the active nodes which are most likely to have a copy of the
data in their caches.

We are currently investigating algorithms and protocols for
path selection and caching in active networks that (to the
extent possible) will maximize the chances that a request
for data will be routed along a path that is likely to quickly
intersect a cache with a copy of the data. However, the
results in this paper are all based on a version of the protocol
that uses shortest path routing.

4.3 Simulation Results

Caching within local client sites (client site caching) is al-
ready a well-accepted and widely used mechanism with clear
benefits. Given this, we assume client site caches large
enough to hold all stocks and study the additional value
of caching within the network. We do this with a series of
simulations.

There are several key parameters in our simulations:

e T, the network topology. We used GT-ITM [5, 6] to
generate a variety of random internetwork topologies.
Each topology is a transit-stub network [30] supporting
1000 end nodes. The end nodes are organized into sites
(of average size six) that are connected to the backbone.
With an average of four sites per backbone node, the
backbone consists of 40 nodes that are randomly con-
nected with average degree of 3.5. In all of our simu-
lations each node that connects a site to the backbone
has caching enabled, and all caches are large enough to
hold all stocks. When simulating our active protocol,
all nodes in the backbone act as caches as well.

N, the number of clients sending requests to a single
server. We vary the number of clients from 100 to 1000,
by hundreds. To simulate fewer than 1000 clients, we
deactivate a fraction of the end nodes in each topology.

U, the number (universe) of stocks for which quotes are
available. Increasing this relative to the request rate of
clients tends to decrease the number of cache hits be-
cause it decreases the likelihood that multiple clients
will request the same stock within a currency period.
Decreasing it tends to diminish the value of caching
within the network relative to caching at client sites.
In our simulations we look at a universe containing 100
stocks. Even this small universe gives us a relatively
small maximum ratio of clients to stocks (N/U = 10),
which would tend to underestimate the utility of our
caching scheme. For reasons of practicality (i.e., sim-
ulation time), our values for U and N are lower than
what one might expect to be the case in a real system.
However, we believe that for the purpose of our exper-
iments, their individual values do not matter so much
as the value of their ratio N/U.

C, the period of time for which clients consider a quote
to be current. For simplicity, in our simulations we

595

assume this is the same for all clients. As C increases,
the number of cache hits in both network and client
caches tends to increase. In all our simulations we use
the same currency (1 second), since varying currency
has similar effects to varying the rate of requests.

R, the rate of requests sent by each client. We as-
sume that each client makes R independent requests a
second. These requests are chosen at random from U
stocks. For a fixed currency, the hit rate in both net-
work and client caches tends to go up with the request
rate. In our simulations, each client generates one re-
quest per second (R = 1).

We used a modified version of the ns [19] simulator to sim-
ulate our protocol. In order to keep this preliminary anal-
ysis simple, and to avoid having to make unsubstantiated
assumptions about the relative throughputs of active and
non-active routers, we simulate a high capacity network in
which there are no congestion-related losses.

We performed two sets of experiments. In the first set, we
varied the number of clients from 100 to 1000 and measured
server load. This was done for both active router caching
and client site only caching schemes. Results were averaged
over 10 random topologies.

In the second set, we used 1000 clients (the maximum load
seen in the first set of experiments), and measured router
load and round-trip request hop counts. Again, this was
done for both active router and client cite only caching
schemes. Here, results were averaged over 100 topologies.

4.3.1 Load on Server

In times of great interest, the server can become a bottle-
neck. Not only are there more client requests, but if the
network is congested lost packets introduce retransmission
overhead at the server as well.

Figure 1 plots the arrival rate of requests at the server
against the number of clients. The graph compares the case
where all backbone nodes are active with the case in which
no backbone nodes are active. In both cases, caching occurs
at client sites.

As seen in the graph, our experiments highlight a range of
cases in which client site caches are not effective. The server
load is decreased by very little because there are few dupli-
cate requests generated by each site’s clients per currency
interval. When the sites are larger, the currency interval
longer, or the request rate higher, then client site caches
may be effective. When this is not so (as is considered here)
then our active protocol may be a better choice.

The graph shows that the impact of network caching on
server load grows with the number of clients. As the number
of clients grow, the total number of misses seen across all
client site caches grows. In the non-active scenario, all of

Effect of Caching on Server Load

1000 T

T T T
Client-site caching only —+—
Plus Active Router Caching ---x---
800
E5)
c
Q
O
b3
% 600 |
[0}
L]
=)
o
e
kel
S 400 |
o
z
O
n
200
O ! 1 1 i
0 200 400 600 800

1000

Client Load (requests/second)

Figure 1: Server Load

these misses result in server accesses. With active router
caching, many of these misses are intercepted and serviced
by the network caches, thus reducing server load. In the
case where N=1000, we see a decrease in server load of 54%.
Caches shared between sites are clearly beneficial.

Ultimately, we would like to compare intra-network caching
to other systems of shared caches (such as [7, 26, 31]) that
locate their caches at network endpoints. However, it is not
yet clear which endpoint caching scheme is the most effec-
tive. For the moment, we only observe that if our simple
scheme were extended so as to relocate each network cache
to its nearest network endpoint, both latency and band-
width utilization would increase as a result of the longer
paths requests would have to travel.

4.3.2 Load on Routers

Figure 2 plots the cumulative distribution of router load on
the backbone. Only the top portion of the plot is shown,
indicating the load on the busiest routers, which are near
the server. (Because we simulate only a single server, the
bulk of the routers are uninteresting as they handle a low
volume of traffic near clients). The graph shows that the im-
pact of network caching is substantial for these busy routers.
The peak demand is reduced by 50%. In addition, the to-
tal network load summed across all routers is lowered 35%

596

by caching within the network from 7419.5 to 4845.33 re-
quests/second.

These results have some bearing on how fast an active router
needs to relative to a non-active router. Suppose, for exam-
ple, at peak load, an active router must handle 1/x the
amount of traffic that a conventional router must handle. If
a conventional router is x times faster than an active router,
then each can handle the same peak load. Our graph shows
that x is approximately 2 for the top 5% of the routers and
1.5 over the aggregate load.

4.3.3 Latency at Clients

At this time, we do not have a credible model of the differ-
ence in the time required to pass through active and inactive
routers. Therefore, we are unable to make any quantita-
tive statements about latency. However, we can show that
in-network caching does reduce the average number of hops
taken before clients receive a response to a request. Figure 3
shows the distribution of round-trip hop counts for both sce-
narios (in-network caching and client site only). The graph
shows a clear shift towards shorter round trips in the active
caching experiments. The average round trip is reduced by
18% from 9.9 hops to 8.1 hops.

These results follow directly from the fact that, as discussed

Effect of Caching on Router Load

1 T T I —— == T T T T ﬁ//
0.95 |- 4

2 09 | Client-site caching only :
2 Plus Active Router Caching -------
kS
1= I}
S i
g 085} / .
w |

0.8 / i

l'l
075 'l 1 1 1 1 L . 1l
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Router Load (packets/sec)

Figure 2: Router Load

above, fewer requests need to make the roundtrip from the
client to the server and back. However, the net effect on
latency will depend on link delays, server processing times,
router processing times and router load.

With active nodes, the reduced load on the server has the
potential to reduce latenicy when the server itself is a source
of delay. Similarly, the reduced load on routers can re-
duce congestion-related latency. Since fewer packets would
be dropped, long retransmission delays would be avoided.
In future work, we hope to produce quantitative data that

demonstrates this effect.

5 Related Work

In this section, we describe how our work relates to previous
research on programmable networks and customization of

network services.

Work at Georgia Tech investigates the benefits of support-
ing application-specific congestion control mechanisms (e.g.,
selective discard, lossless compression, transcoding) within
the network [3]. They find that when transferring MPEG
frames, selective discard improves useful throughput dur-
ing periods of congestion. Though their experiments did
not address the impact of this processing on other network

traffic, their results are consistent with ours, as are their
conclusions about the utility of application-specific process-
ing within the network.

Other current projects building programmable networks are
Switchware [22], whose Active Bridge demonstrates the ben-
efits of active networking in terms of enhanced functional-
ity rather than improved performance, and Netscript [29],

which focuses on management tasks.

Our work has been influenced by the philosophy of Appli-
cation Level Framing (ALF) [9], a design guideline that in-
cludes the semantics of the application in the design of its
transport protocol. It argues that the roles of application
and network must be matched for efficient processing. Other
instantiations of this philosophy include configurable proto-
col systems, notably the x-kernel [16] and protocol boost-

ers [18].

Programmable network services are also supported by ex-
tensible operating systems technology [11, 8, 2]. For exam-
ple, ASHs [25] allow user-defined handlers to be run by the
kernel in response to packet arrivals, while Plexus [12] allows
application-specific communication protocols to be incorpo-
rated into the kernel. These systems offer, in the context
of a single node, some of the same kinds of opportunities

offered by active networks.

597

Effect of Caching on Request Latencies

0.35 T

0.3

025 s

0.15 |- /

Fraction of Requests

0.1 /

0.05 /

T T

Client-site caching only -o—
Plus Active Router Caching -+~

{ 1

10 20

Round Trip Request Latency (hops)

Figure 3: Round-trip hop counts

6 Conclusion

As we said in Section 1 the goal of the work reported here
was to demonstrate that:

1. There are a variety of useful network services that in-

volve processing at intermediate nodes, and

The use of such services can lead to better end-to-end
performance for applications.

In support of these hypotheses, we presented three protocols
supporting novel network services: reliable multicast, online
auctions, and mixing sensor data. For each, we briefly dis-
cussed how it could be used to improve the performance
of applications. We then presented a detailed simulation
analysis of the performance of an active caching protocol.

The results were encouraging. Our qualitative analysis of
the novel network services presented in Section 3 strongly
suggests that these protocols have the potential of improv-
ing the performance of the applications that use them while
simultaneously reducing total network traffic. The simu-
lations reported on in Section 4 were equally encouraging.
First, through the use of a simple active protocol, we were
able to support the caching of (heretofore considered un-
cacheable) rapidly changing data. Second, the protocol ef-
fected performance improvements in the form of reduced

598

load on the server and routers, and shorter round-trip hop
counts.

The experience and results described in this paper lead us to
conclude that active network protocols can indeed improve
application performance.

Acknowledgments

This work has benefited greatly from the help of our col-
leagues. In particular, we wish to acknowledge: Li Lehman,
for her work on reliable multicast; Mike Ismert, for perfor-
mance modeling; David Murphy, for his work on a node im-
plementation; and Steve Garland and David Tennenhouse
for their overall guidance. We would also like to thank the
INFOCOM referees, whose useful comments led to several
major changes in this paper.

References

(1] H. Balakrishnan et al. A comparison of mechanisms
for improving TCP performance over wireless links. In

SIGCOMM 1996, Stanford, CA, August 1996.

(2] B. Bershad et al. Extensibility, Safety and Performance
in the SPIN Operating System. In 15th Symp. on Op-
erating Systems Principles, Dec. 1995.

[3] S. Bhattacharjee et al. On Active Networking and Con-
gestion. Technical Report GIT-CC-96/02, College of
Computing, Georgia Institute of Technology, 1996.

[4] S. Bhattacharjee et al. Self-organizing wide-area net-
work caches. In INFOCOM’98, 1998.

[5] K. Calvert and E. Zegura. Georgia Tech In-
ternetwork Topology Models (GT-ITM). Geor-
gia Tech College of Computing. Software on-line:
http://www.cc.gatech.edu/fac/Ellen.Zegura/graphs.html.

(6] K. L. Calvert et al. Modeling Internet Topology. In
IEEE Communications, June 1997.

[7] A. Chankuntod et al. A hierarchical internet object
cache. In Proceedings of 1996 USENIX, 1996.

[8] D. R. Cheriton and K. J. Duda. A caching model of
operating systera functionality. In Proceedings of the
First Symposium on Operating Systems Design and Im-
plementation, 1994.

D. D. Clark and D. L. Tennenhouse. Architectural Con-
siderations for a New Generation of Protocols. In SIG-
COMM ’90, 1990.

[10]
[11]

eBay Inc. AuctionWeb server. http://www.ebay.com/.

D. R. Engler et al. Exokernel: An Operating System
Architecture for Application-Level Resource Manage-
ment. In 15th Symp. on Operating Systems Principles,
1995.

M. E. Fiuczynski and B. N. Bershad: An extensible
protocol architecture for application-specific network-
ing. In Proceedings of the 1996 Winter USENIX Con-
ference, 1996.

S. Floyd et al. A Reliable Multicast Framework for
Light-weight Sessions and Application Level Framing.
In ACM SIGCOMM’95, 1995.

(12]

[13]

[14] M. Greenwald et al. Designing an academic firewall:
Policy, practice and experience with SURF. In Pro-
ceedings of the 1996 Symposium on Network and Dis-

tributed Systems Security, San Diego, CA, 1996.

H. W. Holbrock et al. Log-Based Receiver-Reliable
Multicast for Distributed Interactive Simulation. In

SIGCOMM’95. ACM, 1995.

N. C. Hutchinson and L. L. Peterson. The x-Kernel:
An Architecture for Implementing Network Protocols.
IEEE Transactions on Software Engineering, 17(1):64-
76, Jan 1991.

L.-W. Lehman et al.
INFOCOM’98, 1998.

[15]

[16]

17 Active Reliable Multicast. In

599

[18] A. Mallet et al. Operating System Support for Protocol
Boosters. Technical Report MS-CIS-96-13, CIS Dept.,
Univ. of Pennsylvania, 1996.

{19! S. McCanne and S. Floyd. The LBNL network simu-
lator. Lawrence Berkeley Laboratory. Software on-line:
http://www-nrg.ee.lbl.gov/ns/.

[20] ONSALE Inc. ONSALE

http://www.onsale.com/.

web server.

[21] C. Papadopoulos et al. An error control scheme
for large-scale multicast applications. Unpub-
lished manuscript from Washington Univ., St. Louis
(http:/ /www.ccrc.wustl.edu/ christos), 1997.

{22] J. Smith et al. SwitchWare Accelerating Network Evo-
lution. Technical Report MS-CIS-96-38, CIS Dept.,
Univ. of Pennsylvannia, May 1996.

[23] D. Tennenhouse et al. A Survey of Active Network
Research. IEEE Communications Magazine, 1997.

[24] D. L. Tennenhouse and D. Wetherall. Towards an ac-
tive network architecture. In Multimedia Computing
and Networking 96, San Jose, CA, Jan 1996.

D. A. Wallach et al. ASHs: Application-specific han-
dlers for high-performance messaging. In SIGCOMM
"96. ACM, 1996.

Z. Wang and J. Crowcroft. Cachemesh: A distributed
cache system for world wide web. NLANR Web
Caching Workshop, June 1997.

D. Wetherall et al. ANTS: A Toolkit for Building and
Dynamically Deploying Network Protocols. In OPE-
NARCH’98, 1998.

(27]

[28] N. Yeadon. Quality of service for multimedia commu-
nications. PhD thesis, Lancaster University, May 1996.

[29] Y. Yemini and S. da Silva. Towards Programmable Net-
works. In IFIP/IEEE Intl. Workshop on Distributed

Systems: Operations and Management, 1996.

[30] E. W. Zegura et al. How to Model an Internetwork. In
INFOCOM’96. IEEE, 1996.

[31] L. Zhang et al. Adaptive web caching. NLANR Web
Caching Workshop, June 1997.

