Service Introduction in an Active Network

by

David J. Wetherall

E.E. Massachusetts Institute of Technology (1995)
S.M. Massachusetts Institute of Technology (1994)
B.E. University of Western Australia (1989)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
at the
Massachusetts Institute of Technology
February 1999

(©Massachusetts Institute of Technology 1998. All rights reserved.

AU O
Department of Electrical Engineering and Computer Science
November 2, 1998

Certified Dy . ..o
John V. Guttag

Professor, Computer Science

Thesis Supervisor

Certified Dy . ..o
David L. Tennenhouse

Senior Research Scientist, Computer Science

Thesis Supervisor

Accepted Dy . ..o e
Arthur C. Smith
Chairman, Departmental Committee on Graduate Students

Service Introduction in an Active Network
by
David J. Wetherall

E.E. Massachusetts Institute of Technology (1995)
S.M. Massachusetts Institute of Technology (1994)
B.E. University of Western Australia (1989)

Submitted to the Department of Electrical Engineering and Computer Science
on November 2, 1998, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

Abstract

In today’s networks, the evolution of wide-area services is constrained by standardization
and compatibility concerns. The result is that the introduction of a new service occurs much
more slowly than the emergence of new applications and technologies that benefit from
it. To ameliorate this problem, an active network exploits mobile code and programmable
infrastructure to provide rapid and specialized service introduction. A viable active network
has the potential to change the way network protocols are designed and used, stimulating
innovation and hastening the arrival of new functionality. There are, however, a number of
challenges that must be overcome in the design of an active network. Chief among them
are how to express new services as network programs, and how to execute these programs
efficiently and securely.

In this thesis, I present a novel network architecture, ANTS, that tackles these challenges, and
describe its prototype implementation in the form of a Java-based toolkit. The main finding
of this research is that ANTS is able to introduce new services readily and at a reasonable
cost. Experiments with multicast and Web caching services provide evidence that new
services can be constructed despite a restricted programming model and constraints such
as a network that is only partially active. Measurements of the toolkit show that the
forwarding mechanism requires little processing beyond that of IP, such that even the user-
level Java toolkit is able to run at 10 Mbps Ethernet rates. Moreover, ANTS achieves this
efficiency while raising few new security concerns compared to IP, the most significant of
which is that the global resource consumption of a service must be certified as acceptable.
I conclude that the active network approach shows great promise as a means of promoting
network evolution.

Thesis Supervisor: John V. Guttag
Title: Professor, Computer Science

Thesis Supervisor: David L. Tennenhouse
Title: Senior Research Scientist, Computer Science

Acknowledgments

Katrin, my wife, provided the support and encouragement that saw me through and for
which I will always be grateful.

David Tennenhouse and John Guttag, my supervisors, proved to be a most effective team,
helping me to strike out in a new direction and arrive safely at a destination. Their guidance
has helped me to start a career, rather than finish a thesis.

Vanu Bose, my friend, did more than most to maintain a jovial atmosphere as we paced
each other in these last years. (Wait, maybe that’s why it took so long?)

Members of the Active Networks project and Software Devices and Systems group here
at MIT helped me turn ideas into a working system with their suggestions, questions and
(most useful of all) code. In particular T would like to single out Jon Santos, and thank
Ulana Legedza, Dave Murphy, Steve Garland, Erik Nygren and Li Lehman.

Frans Kaashoek and Butler Lampson, my readers, were a source of valuable and constructive
feedback that has improved this work. I wish I had sought them out earlier.

I am also grateful to the users of ANTS and members of the wider active network commu-
nity, especially Larry Peterson and Jonathan Smith. Releasing ANTS was a very positive
experience that helped to drive my research forward.

Contents

1 Introduction 13
1.1 The Need for Flexible Infrastructure 13
1.2 Today’s Networks Lack Flexibility 15
1.3 A Web-Caching Example 17
1.4 Introducing New Services with ANTS 18
1.5 Evaluation of the Hypothesis 24
1.6 Summary of Contributions L o oo 24
1.7 Organization e 25

2 An Extensible Internet Architecture 27
2.1 The ANTS Model of Extensibility 27
2.2 Capsule Programming Model 31
2.3 Code Distribution 38
2.4 Node Operating System 48
2.5 Deployment Considerations 54

3 The ANTS Toolkit 57
3.1 Overview of Key Interfaces o7
3.2 A Simple Example 67
3.3 Major Implementation Components 71
3.4 Aspects Not Addressed 78
3.5 Experience With Java oo 80

4 Introducing Network Services 83
4.1 Programming with Capsules 83
4.2 Case Study I — Multicast oo 85
4.3 Case Study IT — Web Caching 95

5 Evaluating ANTS 105
5.1 Node Performance 105
5.2 Code Distribution Lo 117
5.3 Security e e e 124
5.4 EXPressivenessot e e e e e e 127
5.5 Application Performance oo oo 132

6 Related Work 135
6.1 Configurable Protocol Suites L. 135
6.2 Programmable Networks L. 136

6.3 Active Networks 137

Conclusions 143
7.1 Conclusions e e e e 143
7.2 Contributions 144
7.3 Open Questions Lo e 148

List of Figures

1-1 The Internet Protocol Stack as an Hourglass Model
1-2 Combining Web Cache Lookup with Network Routing
1-3 Entities in an ANTS active network

2-1 Entities in an ANTS active network oL
2-2 Capsule Code Abstractions and their Relationships
2-3 Calculation of Capsule Types
2-4 Key Features of the Capsule Format
2-5 Transfer of Code Groups with the Demand Pull Protocol
2-6 Steps in the Demand Pull Protocol
2-7 Generation of Load Request capsules during forwarding
2-8 Processing of Load Request capsules
2-9 Processing of Load Response capsules

3-1 Key classes of the toolkit and their relationship
3-2 Source code for the class PMTUCapsule« . oo v v oo ..
3-3 Source code for the class PMTUProtocol
3-4 Source code for the class PMTUApplication
3-5 Control structure and buffering in the active node
3-6 Collapsed receive, Capsule and transmit representations

4-1 Pseudo-code for joining the shared tree
4-2 Path of JoinPrune capsules as receivers join the shared tree
4-3 Pseudo-code for sending data on the shared tree
4-4 Path of Data capsules after the receivers join the shared tree.
4-5 Pseudo-code for processing RegisterStop capsules
4-6 Path of RegisterStop and Data capsules
4-7 Path of a two level Subcast capsule and subsequent Data capsules.
4-8 Path of Suppress capsules sent from all receivers.
4-9 Pseudo-code for processing Bind capsules
4-10 Path of Bind capsules. L Lo
4-11 Pseudo-code for processing Query capsules
4-12 Path of a Query capsule that hits in a network cache.
4-13 Pseudo-code for processing Redirect capsules
4-14 Pseudo-code for processing Activate capsules
4-15 Path of capsules that load a downstream cache.
4-16 Path of capsules that return a document to the client.

5-1 Median Latency of an ANTS node as a function of Capsule Payload Size

15
17
18

28
30
30
31
41
41
42
43
44

58
68
69
70
71
72

87
89
90
91
92
93
94
94
97
97
98
99
100
101
102
102

106

5-2

o-4
5-9
o-6
5-7
0-8
5-9
5-10
5-11
5-12
5-13
5-14

Cumulative PDF of the Latency of an ANTSnode 107

Throughput of an ANTS node as a function of Capsule Size 108
Throughput of an ANTS node as a function of Capsule Size 109
Reception of a Packet Buffer (Step 1) 109
Receive Header Processing with ANEP (Step2) 110
Demultiplexing by Capsule Type (Step 3) 110
Decoding of a Capsule after Reception (Step 4) 111
Default Forwarding in the Capsule Framework (Step 5) 112
Route Lookup (Step 6) 113
Encoding of a Capsule for Transmission (Step 7) 113
Transmit Header Processing with ANEP (Step 8) 114
Transmission of a Packet Buffer (Step 9) 115
Components of a Code Loading Event 119

10

List of Tables

21

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

5.1
5.2
9.3
5.4

Node API exported to capsule forwarding routines 34
Node API exported to capsule forwarding routines 59
Exceptions during capsule forwarding 59
Capsule APT 61
DataCapsule APT 61
Capsule Subclass Framework 62
Protocol API o 63
Application APT Lo 64
Channel API 66
Profile of DataCapsule Processing Steps within an ANTSnode 115
Latency for different types of Capsules 117
Code Size and Code Loading Latency for different types of Capsule 118
Breakdown of Load Latency Components 118

11

12

Chapter 1

Introduction

In today’s networks, the rate of change is restricted by standardization and compatibility
concerns. The result is that the introduction of new services occurs much more slowly than
the emergence of new applications and technologies that benefit from new services. To
ameliorate this problem, an active network exploits programmable infrastructure to provide
rapid and specialized service introduction.

A viable active network has the potential to change the way network protocols are designed
and used, stimulating innovation and hastening the arrival of new functionality. There
are, however, many challenges in the design of an active network, among them how to
express new services as network programs, and how to execute these programs efficiently and
securely. There are also opportunities that exist in an active network but not a conventional
one, in particular the availability of computation within the network.

In this thesis, I present a novel network architecture, ANTS, that tackles these challenges
and takes advantage of these opportunities. Network programming in ANTS is based on
capsules, special packets that combine data with a customized forwarding routine. The
type of forwarding is selected by end user software when a capsule is injected into the
network. The corresponding forwarding routine is transferred along with the data as the
capsule passes through the network, and it is executed at programmable routers along the
forwarding path.

The remainder of the introduction is organized as follows. In the first three sections, I argue
the need for network infrastructure in which new services can be introduced readily and
discuss how the Internet fails to provide the requisite flexibility. The next section describes
how the ANTS architecture increases flexibility, gives examples of the kind of new services it
is intended to support, and discusses architectural ramifications. In the final three sections,
I summarize the method, contributions, and organization of this work.

1.1 The Need for Flexible Infrastructure

Networking as a field is characterized by rapid change. New technologies and new applica-
tions have emerged quickly for at least a decade, and this trend shows no signs of abating.
In turn, new ways of using the network often benefit from new services within the network

13

that enhance functionality or improve performance to better accommodate the new modes
of use. Examples of ongoing changes in today’s Internet illustrate this interaction:

e Multi-party applications benefit from multicast services because they greatly reduce
the bandwidth needed to communicate from one host to many others. For example,
conferencing with wb [Floyd et al., 1997] is implemented using IP Multicast [Deering,
1989].

e Real-time applications benefit from resource reservation and service differentiation
mechanisms because they assist the delivery of time-sensitive data in a timely fashion.
For example, the performance of Internet telephony applications could be improved
by using mechanisms such as RSVP [Braden et al., 1997, Integrated services and

Differentiated services!.

e Laptops benefit from host mobility services such as Mobile IP [Perkins, 1996]. These
services allow a portable computer to be connected to the network at different sites
without the need to reconfigure address information.

It is not surprising that the way a network is used affects the design of its services. In
communication networks, two factors combine to translate this interaction into the need for
flexible network services.

First, predicting the popular modes of network use is a challenging task. Both email and
the Web are benefits of the Internet that were not anticipated [Leiner et al., 1997]. No-one
knows what new services will emerge in the next decade, though it is clear that the use of
the Internet is diversifying. Applications such as distance learning, electronic commerce,
Internet telephony, and customized entertainment broadcasting all have the potential to
explode in usage and impact network services in the process. In such a dynamic world it
is not practical to design an optimum network service, nor is it realistic to limit users to a
“lowest common denominator” service.

Second, the utility of an internetwork is related to its connectivity, with larger networks
generally considered to be the most valuable. These are precisely the networks that cannot
easily be replaced because the existing investment is large and must be preserved. Conse-
quently, large networks must be upgraded, preferably in a fashion that is compatible with
existing services. This process is continual since large networks tend to persist for a long
time and usage patterns change over that period.

Given this interaction, the ability to accommodate new services within the infrastructure
is of prime importance. This fact is receiving increasing recognition. The Next Generation
Internet (NGI) initiative explicitly recognizes the need for infrastructure that is able to
accommodate new services as they emerge [CRA, 1997]. In the Internet today, new switch-
ing technologies such as Multi-Protocol Label Swapping (MPLS)? are being explored to
simultaneously boost raw forwarding performance and ease the introduction of new routing
services. Finally, in telecommunications networks, the Intelligent Network architecture? is

'Refer to the IETF Integrated Services and Differentiated Services Working Groups for current details.
Note that in this dissertation, by convention, footnotes are used to refer to unpublished material such as
Web pages, and references are used for otherwise published material.

“Refer to the IETF MPLS Working Group for current details.

3See, for example, IEEE Communications Special Issue: Marching Toward the Global Intelligent Network,
Vol. 31, No. 3,March 1993.

14

being standardized to speed the development of value-added services such as 1-800 num-
bers, while the Open Signaling community? is incorporating programmability in the control
plane as a means to express new services.

In summary, to be most effective, network services need to be flexible. It is impractical to
either design an optimum service based on usage, or to construct new networks as usage

patterns change.
APPLI CATI ON \HFTP SMIP| ... VAT/N/

TRANSPORT TCP UDP /

LI NK % hernet | ATM| . .. PPP\

Figure 1-1: The Internet Protocol Stack as an Hourglass Model

1.2 Today’s Networks Lack Flexibility

Despite the need for flexibility, the process of changing network services in the Internet
is lengthy and difficult. As an illustration of the magnitude of these difficulties, none of
the example changes described in Section 1.1 have been fully deployed, despite clear-cut
needs that have often been recognized for years. Recent debate about IPv6 illustrates these
difficulties [Koprowski, 1998].

To explore network flexibility, I describe different types of change according to their location
in a layered protocol stack, the standard organizational model of network functionality. To
be concrete, the discussion is based on the Internet protocol layers, as abstracted in Figure
1-1. The Internet is arguably the most successful example of a modern and general purpose
computer network. However, much of the discussion applies to other layered systems as
well.

Change at the link and application layers can occur relatively quickly because it is limited
in scope. The effects of new technologies are limited by physical scope, and so can be
introduced by upgrading the affected area. This is demonstrated by the rapid emergence of
technologies such as Fast Ethernet, soon to be joined by Gigabit Ethernet. Similarly, the
effects of new applications are confined to their participants, and (unlike TCP and UDP)
application protocols are typically distributed as part of the application itself and run in
user space. Thus Web browsers and servers, and multi-player games such as Quake, have
been deployed as quickly as people have been willing to use them.

“See http://comet.ctr.columbia.edu/opensig/ for more information.

15

Change at the network and transport layers are the bottleneck because they are the basis
for interoperability between different link layer technologies and higher layer applications.
As such, it is important that they are stable and widely available to provide continuity of
service. To preserve these properties, each change must first proceed through a lengthy
standardization process, typically lasting years. This must then be followed by manual
deployment. Since the implementation of IP is spread across many routers, and that of
TCP/IP across many operating systems, some changes might not be effective for a period
of years.

The difficulty of effecting network and transport layer change has further consequences. It
leads to requirements for backwards-compatibility and incremental deployment.

Backwards-compatibility is necessary to provide connectivity between new and old service
areas since it is not possible to upgrade all portions of the network simultaneously. This
complicates protocol design. The net result is an emphasis on minimal changes that serve
general purpose needs, on one all-purpose protocol rather than many special-purpose pro-
tocols. In the case of TCP, O’'Malley argues that this approach is ineffective, and suggests
that a versioning mechanism support evolution [O’Malley and Peterson, 1991]. Regardless
of the mechanism, however, it is clear that the current system does not match the increas-
ing diversity with which the Internet is used and does not encourage the experimentation
necessary for innovation.

Incremental deployment is necessary to allow a new service region to grow until the service
is available across the entire network. It is enabled by localizing or otherwise minimizing
the scope of the change in terms of network nodes. This occurs naturally for some changes
in router and end-system processing because their effects are transparent to other nodes,
for example, RED gateways [Floyd and Jacobson, 1993] and TCP refinements to congestion
control [Stevens, 1997]. It can be made to occur for other changes that are backwards-
compatible, such as Mobile IP [Perkins, 1996]. In the case of TCP, additional processing
that is not transparent can be negotiated between the two end-systems during connection-
establishment, as is done for TCP long-fat pipe and selective-acknowledgment extensions
[Jacobson et al., 1992, Mathis et al., 1996]. In the case of IP, some changes in processing are
required at only a pair of nodes, such as IP security extensions [Atkinson, 1995]. Services
that can be made to correspond to these situations can be deployed with relatively few
operational constraints.

Unfortunately, some new services are not easily localized at the network layer. In this
case, the only reasonable deployment mechanism is to implement the new service as an
overlay, that is, as a layer on top of the old network service instead of in place of it. This
strategy is currently used to provide IP multicast service encapsulated within IP to hosts
that participate in the MBONE®. Similarly, it is used to provide IPv6 service on the 6BONES.

Overlays used in this manner can be a temporary step towards full deployment. They
are useful for experimentation and early provisioning of a new service because, by their
nature, they isolate it from the old network service. They are not a long-term solution
because overlays duplicate mechanism and incur performance overheads, often beyond that
of packet encapsulation. In the case of the MBONE, for example, multiple copies of a

"Refer to the MBONE Deployment Working Group of the IETF for current details.
®Refer to the Next Generation Transition Working Group of the IETF for current details.

16

cache

client

“““

search o .
pat h : :

server

cache cache

Figure 1-2: Combining Web Cache Lookup with Network Routing

message will traverse a link — the very situation multicast seeks to avoid — when the
overlay topology does not match the underlying topology. Further, services such as real-
time cannot be deployed as an overlay effectively because the underlying IP layer does not
provide the required functionality, in this case bandwidth reservation. In this case, a new
service will be only partially-available, or simply unavailable, over the wide-area until there
is a significant installed base.

In summary, the current process is manual, slow and complicated because of the need
for consensus and concerns for backwards-compatibility that are necessary to preserve an
existing investment. Effectively, only those changes that are localized in scope are able to
be incorporated, and the network layer does not explicitly support such localization.

1.3 A Web-Caching Example

Web caching serves as an example of both new modes of use impacting the network infras-
tructure, and the current difficulty of introducing changes. With the dramatic increase in
the popularity of the Web, caching mechanisms are needed to ensure that the growth of Web
traffic does not congest the Internet. Early efforts in client-side caching and proxy caching
improved client behavior to avoid redundant transfers and redirected queries through a lo-
cal agent to improve sharing, respectively. Ongoing research is focussed on the sharing of
information between caches at different locations in the network infrastructure. The central
questions are: how to locate a copy of a document by searching through the caches, and
how to propagate documents to caches for future queries.

A key observation ties what would otherwise be a purely application layer function — Web
document caching — with the network layer: an important goal is to reduce network load,
and to do so effectively requires that cache transfer paths be well-matched to the underlying
network topology. Hypothetically, a straightforward and effective approach would be to
combine the network routing of query and response with caching as shown in Figure 1-2.
Here, as a query travels from client to server, nearby caches are consulted along the way,
and as a document travels back to the client, nearby caches are replenished. In terms of
network load, this scheme has the desirable property that (modulo cache size limitations)
a given document will only traverse each network link once. It can also result in globally
cost-effective cache search paths in the same sense that multicast routes based on shortest
paths are known to be effective in practice [Doar and Leslie, 1993].

17

active
node

channel : Ip i channel active
——

active

node : router node
— capsul e capsul e \

Figure 1-3: Entities in an ANTS active network

Yet this hypothetical service cannot be provided in today’s Internet. This is because it
requires that forwarding be modified within the network, whereas IP provides only a “black-
box” service that forwards across the network. The same observation applies to any other
service that affects forwarding along network paths.

Given this mismatch, other caching systems must approximate this strategy by other means.
For example, Squid [Wessels and Claffy, 1998] requires manual configuration of a search
path, which is tedious and likely non-optimal, while Adaptive Web Caching [Zhang et al.,
1998] uses scoped multicast as a form of indirection to cluster caches, a more dynamic
but complex mechanism. Coming at the problem from a different end, a recent spate of
commercial products provide network-layer support for Web caching based on “layer four”
switching technologies. Cisco’s Cache Director’, for example, attaches to a router and
intercepts Web traffic that would otherwise be forwarded for cache processing. In this
manner, selected routers can act as cache nodes within the network in a manner that is
transparent to their clients.

All of these approaches incur costs, such as additional bandwidth or layers, that might
reduce performance compared to the service that retains queries within the network layer.
None of them capture the simplicity and power of the service that combines routing and
caching directly.

1.4 Introducing New Services with ANTS

In contrast, the hypothetical Web caching service can be introduced readily with ANTS,
the network architecture presented in this dissertation. ANTS is an active network [Tennen-
house and Wetherall, 1996] that can be re-programmed to provide services that were not

"See http://www.cisco.com/warp/public/751/cache/ for product information.

18

anticipated when it was originally designed. The key hypothesis explored in this work is
that, compared to a conventional network, an active network can facilitate the rapid and
automatic introduction of new services at a reasonable cost in terms of performance and
security overheads. I introduce ANTS by providing an overview of its functionality, describ-
ing the kinds of service it is able to support, and discussing the architectural consequences
of such an active network.

1.4.1 Overview of ANTS

The entities of an ANTS network are shown in Figure 1-3. Applications use the network by
sending and receiving special types of packets called capsules via a programmable router
referred to as an active node. Each active node is connected to its neighbors, some of
which can be conventional IP-style routers, by link layer channels. Compatibility with
existing routers supports incremental deployment of the architecture itself, a necessary
consideration to bootstrap an active network in the Internet. More fundamentally, it suits
the heterogeneity of large networks, in which some nodes such as backbone routers might
be computationally limited, while other nodes near the edges of the network might be
bandwidth constrained.

The innovative properties of an ANTS network stem from the interaction of capsules and
active nodes. I describe the architecture in terms of three components:

e the capsule programming model with which network services are customized;

e the demand pull code distribution system that helps to realize this model in a manner
compatible with high performance; and

e the active node operating system that restricts the interactions between different
programs so that they can safely be run in the network simultaneously.

Capsule Programming Model

In ANTS, network programming is based on the capsule model. Capsules are special packets
that encapsulate packet data with a customized forwarding routine. The type of forwarding
is selected by end user software when a capsule is injected into the network. The corre-
sponding forwarding routine is transferred by using mobile code techniques along with the
data as the capsule passes through the network. The routine is executed at each active node
that is encountered along the forwarding path. At conventional nodes, IP-style forwarding
is used.

The kinds of custom forwarding routine that can be constructed depend on the capabilities
of the active node. ANTS provides API calls to query the node environment, manipulate a
soft-store of application defined objects that are held for a short time, and route capsules
towards other nodes. Since this programmability exists within the network layer, new
services can interact with routing and topology information, packet loss events, and link
characteristics. None of this information is directly available to overlay solutions.

This model provides one answer to the consensus and deployment problems experienced
today. Deployment of forwarding routines, and hence the service they provide, is fully au-

19

tomatic. It is part of the network architecture rather than an external task. Because the
new forwarding routines affect only the capsules with which they are explicitly associated,
different users can deploy different forwarding routines, thereby introducing different ser-
vices, without conflict or concern for backwards-compatibility. This eases the consensus
problem, since only those users participating in a service at a given moment need agree on
its definition. Rather than standardize on one service and then implement it, ANTS allows
many variations of a service to be tried. The standard version is simply the most popular
one over time.

Demand Pull Code Distribution

To improve the performance of the capsule model in practice, forwarding routine code
is cached at active nodes rather than transferred with every capsule. This technique is
valuable because the traffic flows generated by higher level connections imply that the
same forwarding routine is likely to be invoked many times at a given active node. In
this case, separating the transfer of code and data improves performance because fewer
network resources are expended transferring code and caching provides a basis for runtime
optimizations that allow the forwarding routines to execute more efficiently.

To distribute the code within the network before it is cached, ANTS provides an automatic
demand pull code distribution system. It is designed for forwarding routines that are com-
pact. It transfers the code that implements a new service to nodes along the path that
a capsule using the service follows. The scheme takes advantage of the small code size to
provide lightweight but unreliable transfer: code distribution will either succeed rapidly,
in which case the interruption to forwarding should be transparent to applications, or oc-
casionally fail, in which case the capsule that triggered the load mechanism will appear
to have been lost and must be recovered by applications using the network in the normal
manner.

Active Node Operating System

To ensure that new service programs are run securely within the network, ANTS provides
an active node operating system. It is specially designed, rather than built on top of a
conventional operating system such as Unix, because its mechanisms must run efficiently
for tasks that complete at the capsule forwarding rate. Further, because of the scale of
the Internet and its composition as a collection of autonomous systems, the node operating
system is biased towards mechanisms that treat forwarding routines as untrusted code.
Unlike authentication and authorization schemes, these mechanisms allow code to come
from any source and prevent accidental as well as malicious errors. Ideally, this approach
should make it possible for any service code to be run within the network, and if poorly
designed do no harm to the users of other services.

The node operating system provides protection mechanisms that isolate the code of different
services and prevent it from corrupting the network. These mechanisms are built on top of
safe evaluation techniques (the prototype ANTS implementation is written in Java) that are
assumed to provide efficient type and memory safety. To extend this basic level of safety
to protection between services, the capsule model is used to simplify program interactions

20

as follows. When a capsule is injected into the network it is marked with a customized
forwarding routine that is selected by the sender. Effectively, the sender is authorized to
determine the handling of that capsule. By extension, within the network, only the selected
forwarding routine (and related ones that form the new service) should be used to determine
the path of that capsule. In ANTS, this form of isolation is developed into a fingerprint-based
protection model. This means that it is not possible, for example, to construct a service
that hunts for and discards packets belonging to a particular user.

Finally, the node operating system provides resource management mechanisms that pre-
vent the operation of one service from unreasonably interfering with another. Forwarding
routines are monitored as they run at a node to prevent them from running too long, and
infinite loops across nodes are broken in the same manner as the Internet today. A more
difficult problem is to prevent the global resource consumption of one service from inter-
fering with others, for example, by saturating a link with a poorly written program that
ping-pongs capsules across it. In ANTS, these problems are prevented by requiring that
service code be certified by a trusted authority before it can be freely executed. This mech-
anism differs from the remainder of the node operating system, which is able to work with
untrusted code, and is an important area for further research. Nonetheless, the current
system still allows new services to be deployed much more quickly than in the Internet.

1.4.2 Potential New Services

Because capsules specify a customized forwarding routine, ANTS services are typically varia-
tions on IP forwarding. Unlike services that work above IP, they can directly take advantage
of topology and load information to express novel types of routing, flow setup, congestion
handling, measurement, and other network layer functions.

The following hypothetical examples are intended to show the kinds of new services that can
be readily introduced with ANTS, but are difficult to provide in the Internet today. None
of these services can be implemented efficiently by users above the network layer because
they rely on network layer state. Further, since none of these services are transparent to
network users, they cannot be deployed by individual router vendors without concern for
standardization.

e Forwarding support for reliable multicast. Many reliable multicast schemes require
that one sender manage the error control channels of multiple receivers. To do this
quickly and efficiently when there are many receivers, network support might be used
for many-to-one aggregation as well as partial multicasting. Recent proposals for such
mechanisms include [Papadopoulos et al., 1998], [Lehman et al., 1998], and [Levine
and Garcia-Luna-Aceves, 1997], as well as Cisco’s PGM?.

e Explicit Congestion Notification. By allowing routers to notify hosts of impending
congestion, it is possible to avoid unnecessary packet drops in short or delay-sensitive
connections [Floyd, 1994, Ramakrishnan and Floyd, 1999].

e QOS route establishment. Current reservation mechanisms such as RSVP [Braden
et al., 1997] are based on shortest paths. To achieve a desired bandwidth, latency,

8Internet Draft, PGM Reliable Transport Protocol Specification, D. Farinacci et al., January 1998.

21

or other quality-of-service target, however, alternative paths may be indicated. A
scheme for constructing them is described in [Zappala et al., 1997].

e QOS forwarding. Once a reservation is made along a network path, it is desirable
that traffic follow that path. This may not occur with IP routing, since each packet is
independently forwarded along the current shortest path. To address this mismatch,
new forwarding services, for instance the combination of MPLS and RSVP?, must be
defined.

e Multipath routing and forwarding. Internet routing currently makes use of a single
shortest path. Multipath schemes such as [Chen et al., 1998] make use of multiple
disjoint paths to improve available bandwidth or reliability.

e Path MTU discovery. Because packet size is known to have a significant effect on per-
formance, it is recommended that modern TCP implementations perform path Maxi-
mum Transmission Unit (MTU) discovery [McCann et al., 1996, Mogul and Deering,
1990]. This is currently accomplished in an ad hoc manner that triggers error mes-
sages. A better approach may be to combine path MTU queries with connection
setup.

e Anycasting with application metrics. Anycasting is a service that delivers a message
to the “closest” member of a group [Partridge et al., 1993]. While the traditional
metric is routing distance, other metrics, such as a random member or the closest two
members, can be appropriate depending on the application.

There are of course new services that the ANTS architecture is not designed to support.
These fall roughly into three categories, each of which can be tackled in a complementary
manner. First, ANTS deliberately isolates different services within the network. This is
because each user is able to select their own service and without isolation complicated
dependencies would arise. This means that processing which cuts across many services,
such as firewalls or RED gateways, is not well supported. Second, the code distribution
mechanism is designed for forwarding routines that are small; a limit of 16 KB is used in
the prototype. Without extensions, it is not an effective means of transferring routines that
are large compared to the packet size. Third, assumptions that are widespread, such as
the form of the addresses that are encoded as part of all capsules, are not easy to change
because they are not readily localized.

1.4.3 Architectural Ramifications

Active networks are fundamentally different than the networks in use today. Traditional
protocols rely on prior agreement of message processing between communicating parties,
typically with sharp distinction between the roles of intermediate and end-systems. Instead,
an active network relies on prior agreement of a computational model. Within this model,
many forms of distributed processing that blur the roles of router and host can be expressed
to implement different services.

The ANTS capsule model has a number of architectural ramifications. First, it emphasizes
innovation by providing an automatic means of upgrading remote parts of the network,

Internet Draft, Use of Label Switching With RSVP, B. Davie et. al, March 1998.

22

rather than relying on backwards-compatibility because change must be effected manually.
This provides a clean and systematic means of network evolution because changes in network
handling are explicit. In contrast, Internet evolution, has resulted in IP being treated as
a packet format rather than a protocol definition in the sense that any processing that is
compatible with its existing operation can be implemented. Such implicit change sometimes

has unfortunate side-effects, as is the case for Network Address Translation (NAT) boxes!®.

Second, the capsule model encourages the use of many special-purpose protocols that are
tailored to applications, rather than one general-purpose service that targets the “lowest
common denominator”. One way of viewing these specialized network services is as part
of the application that has been “pushed” into the network infrastructure. Two arguments
suggest that leveraging computation in the network in this manner might ultimately improve
performance, despite the overhead of supporting multiple services at active nodes.

To begin, efficient processing at a network node may depend on the application, the local
environment, or a combination of both. With the increasing diversity of networked applica-
tions and environments, it is difficult to argue that a single forwarding routine will provide
the best service in all cases. A number of examples illustrate this:

e Slow start TCP is known to interact poorly with lossy media because loss is interpreted
as congestion. To compensate for this, the Snoop-TCP protocol augments forwarding
at wireless basestations to transparently caching and retransmitting TCP packets and
their acknowledgments as necessary [Balakrishnan et al., 1996]. This has been shown
to improve performance by as much as 100% to 200%.

e Real-time transfers can benefit from different handling in times of congestion. A recent
evaluation of drop priority for layered video [Bajaj et al., 1998] found a 50% increase in
system utility compared to the current end-to-end protocol in widespread use, RLM
[McCanne et al., 1996]. Similarly, a study of the transfer of MPEG-encoded video
found that selective discard schemes (which understand dependencies between I, P,
and B frames) improved the useful throughput in times of congestion [Bhattacharjee
et al., 1996).

Further, the ability to alter the location of application processing by shipping code may
improve performance by interposing computation with communication. This observation is
the basis for earlier studies of programmable RPC [Stamos and Gifford, 1990, Partridge,
1992]. Traditional RPC offers a fixed set of interfaces that, by definition, cannot suit the
needs of all users. By transferring and evaluating programs that use these interfaces, a single
customized RPC that combines what would otherwise be multiple RPCs can be synthesized.
The result is a savings of both bandwidth and latency, as multiple round-trip exchanges are
collapsed into a single exchange. A number of examples show how these arguments apply
to the network infrastructure:

e [P multicasting reduces the aggregate network bandwidth compared to multiple uni-
casting between end-systems because it uses the network topology to advantage.

e Legedza investigated a protocol for caching time-sensitive data within the network
infrastructure [Legedza et al., 1998], and found that it was able to significantly reduce
server load and bandwidth.

OTnternet Draft, Architectural Implications of NATs, T. Hain, November 1998.

23

e Legedza investigated an online auction protocol in which bid rejection tasks were
delegated to nodes within the network [Wetherall et al., 1998]. As well as improving
successful bid throughput, this decomposition decreased client notification delays by
placing the required functionality closer to the clients.

1.5 Evaluation of the Hypothesis

The key hypothesis explored in this dissertation is that an active network can introduce
new services rapidly and automatically, yet at a reasonable cost when compared to a con-
ventional network architecture. The remainder of this dissertation explores that hypothesis
by: defining ANTS; describing its implementation; demonstrating how it can be used to
introduce new services; and evaluating the tradeoffs that it makes in order to do so.

To evaluate the hypothesis, several questions must be answered:

e Does the programming model live up to its promise of automatically introducing non-
trivial services? Capsule programs must be able to express useful services despite
the inherent difficulty of operating at the network layer (where application data is
segmented and transfer is unreliable) and constraints such as partially-active networks
and a limited node API.

e What is the impact of the model on performance? Supporting the ANTS model might
degrade local node performance. This effect must be small enough that users not
relying on the model do not suffer, while users making use of the model are able to
improve overall performance with new services.

e What is the impact of the model on security? A programmable network might in-
troduce many new security hazards. At a minimum, the potential effects of different
services on one another must be well-understood and limited, the network must be
robust in the face of malicious or accidental programming errors, and resource con-
sumption must be arbitrated.

To answer these questions, a framework for assessing network properties is needed. The
strategy pursued in this research is to facilitate a comparison with conventional networks.
The design of ANTS is based on the Internet, arguably the most successful example of a
large internetwork for data communications. Its best-effort IP service is enhanced with the
capsule model to provide flexibility, rather than seeking to design a superior network from
scratch.

1.6 Summary of Contributions

The main finding of this research is that ANTS is able to introduce new services rapidly
and at a reasonable cost. Experiments with multicast and Web caching services provide
evidence that it is possible to construct and deploy new services with the capsule model.
Measurements of the ANTS toolkit show that, compared to IP, the additional mechanism
needed to support capsules is lightweight. The prototype is able to run at rates in excess of
1700 capsules/second for small packets and 16 Mbps for large packets, despite the fact that

24

it is largely limited by Java, which is not required by the architecture. Further, ANTS raises
few additional security concerns compared to the Internet. Most threats can be handled by
active nodes locally and without trusting service code or external parties, with the exception
that the global resource consumption of a service must be certified as reasonable by a central
authority.

More broadly, I conclude that the active network approach shows great promise as a means
of lowering the barriers to innovation, stimulating experimentation, and otherwise hastening
the arrival of new services.

T also make the following specific contributions:

e The definition of an active network approach that is based on capsules, along with a
specific architecture, ANTS, that embodies this approach.

e An analysis of ANTS architecture in terms of the combined levels of flexibility, perfor-
mance and security that it is able to achieve.

e An understanding of how the capsule programming model can be used to express a
variety of network services.

e A demand pull code distribution protocol that automatically deploys service code
along network paths yet is compatible with performance and security goals.

e A fingerprint-based protection model that efficiently separates the state of different
services within the network in a manner equivalent to conventional protocols and
networks today, despite the use of untrusted code.

e A choice of active node API that allows the capsule programming model to be realized
efficiently as extensible packet forwarding, such that forwarding requires few processing
steps beyond those needed for IP.

1.7 Organization

The remainder of this dissertation presents the ANTS architecture, its prototype implemen-
tation and use in the form of the ANTS toolkit, and an evaluation of its effectiveness as a,
network that facilitates the introduction of new services.

The specifics of the ANTS architecture are presented in Chapter 2. This includes details
of the capsule programming model, the API available to custom forwarding routines at
active nodes, the demand pull code distribution protocol, and the node operating system.
Deployment considerations are also discussed.

To experiment with the architecture, a Java-based prototype that runs on PCs was designed
and implemented. This is the ANTS toolkit, described in Chapter 3. While such an imple-
mentation cannot compete with the hardware-based designs of commercial routers in terms
of performance, it is sufficient to study the characteristics of the ANTS programming model,
and has sufficient performance to support routers near the edges of the network today, for
example, nodes with T1 (1.5 Mbps) and modem line rates. In Chapter 4, the toolkit is used
to demonstrate how new services can be introduced in an ANTS network. Two case studies,
for multicast and Web caching services, are described.

25

Based on experiments with the toolkit and characterizations of the architecture, an evalua-
tion of the ANTS is given in Chapter 5. This includes the measurements of the performance
of an ANTS node, a description of its security properties compared to the Internet, and an
assessment of the type of services that can be supported. Finally, related work is presented
in Chapter 6, before concluding remarks and suggestions for future work in Chapter 7.

26

Chapter 2

An Extensible Internet
Architecture

The ANTS architecture adds service extensibility to the Internet with a programming model
based on capsules and active nodes. This chapter contains an overview of the model, followed
by a description of the three main components of the architecture that realize it. Each is
presented along with a discussion of the tradeoffs that were made during its design to
balance the competing concerns of flexibility, performance and security. In the final section,
I discuss deployment considerations.

2.1 The ANTS Model of Extensibility

In this thesis, the term active network is used to refer to a network in which mobile code pro-
grams can be run within the infrastructure to provide customized services [Tennenhouse and
Wetherall, 1996]. There are many ways in which this could be arranged. The ANTS model
of extensibility combines a flexible network programming model based on capsules with its
practical implementation as extensible packet forwarding. Both are described shortly, after
I first clarify some terminology that is used throughout the thesis. The term “service” has
been loosely linked to the execution of programs within the network. More precisely:

e processing refers to the execution of a forwarding routine at a network node. An
example is the execution of the TP forwarding routine at a router.

e protocol refers to the behavior that results when a forwarding routine is executed at
nodes throughout the network. An example is IP itself, which is the result of executing

the IP forwarding routine at all routers.

e service refers to the behavior that a client of a protocol obtains by using the protocol.
An example is the connectionless datagram service provided to network users by IP.

27

active
node

channel : Ip i channel active
——

active

node : router node
— capsul e capsul e \

Figure 2-1: Entities in an ANTS active network

2.1.1 Capsule Programming Model

An ANTS network is composed of the entities shown in Figure 2-1. Applications use the
network by sending and receiving special packets called capsules via their local active node,
which acts as a programmable router. Each active node is connected to its neighbors (only
some of which may be active, as described shortly) by link layer channels to form the
overall network. The key to obtaining customized service is the selection of different types
of capsules by the end-user software, and the subsequent interaction of these capsules with
active nodes within the network infrastructure. The application and channel components
are not innovative, and are simply modeled on the equivalent components of conventional
networks.

In this dissertation, capsules are defined to be the specialization of mobile agents to the
network layer. The term capsule is intended to convey the encapsulation of data packet
and customized forwarding code. Like a mobile agent, the code is executed at each active
node that the capsule visits as it navigates the network. Thus, to express a new service it
is only necessary to construct a new set of capsule types with associated forwarding code
that captures the desired processing.

Telescript [White, 1994] illustrates the agent model. It allows entities to navigate the
network under their own control in order to perform tasks such as electronic commerce on
behalf of a particular user. Like most distributed programming systems, Telescript builds
on services such as reliable transport and stable storage. In contrast, capsules must operate
within the constraints of the network layer because their purpose is to provide new network
services. Capsule programming must be compatible with: unreliable transport, message
duplication and reordering, dynamic and asymmetric routes, and strict size limits. The
result is that, compared to most agent systems, capsules are restricted in their capabilities
so that lightweight implementation mechanisms can be used.

This model differs from service evolution in the Internet in two respects. Most significantly,

28

it is able to express customized processing along entire network paths, rather than upgrade
processing pointwise. This allows new services to be introduced in a single step, without
the requirement for incremental deployment or the need to construct an overlay. Further,
new services are selected explicitly by choosing the type of capsule, rather than implicitly
by router upgrades. This places service control in the hands of end-system software, rather
than the router administrator, and lessens the dependence on backwards-compatibility. To
be most effective, this model should be coupled with a directory service that maps service
names into implementations. In this manner, end-user software can automatically select
the latest version of popular protocols.

2.1.2 Extensible Packet Forwarding

The capsule programming model provides much flexibility and is straightforward to under-
stand, but is expensive to implement in the general case. To facilitate a high performance
implementation, the model is restricted in two ways. I refer to the resulting implementation
as extensible packet forwarding, since it is a step up from the IP forwarding mechanism.

First, the forwarding of a capsule is decomposed into transferring code (which may hap-
pen relatively infrequently), and invoking code (which may happen relatively frequently).
Separating the implementation of forwarding into these components allows each to be im-
plemented with the most appropriate mechanism, and leads to the solution in which code
is cached at active nodes to increase performance.

Many mechanisms can be used to transfer code depending on the size and frequency of the
transfers. In ANTS, a demand pull protocol is used to carry code hop-by-hop as it is needed
and along the same path that it would have followed were it carried within each capsule.
This scheme is intended for compact forwarding routines (on the order of the capsule size)
and traffic patterns for which caching is effective. The transfer is lightweight and unreliable:
it will usually succeed rapidly and without interrupting the connectionless service, but can
occasionally fail, in which case the capsule appears to have been lost. Larger changes in
active node functionality might also be downloaded and cached at active nodes by using
some means of initiating a connection that is independent of the stream of capsules. Such
larger changes in functionality are not studied in this work, but instead are modeled as part
of the heterogeneity of active nodes.

Second, the capsule model is modified to be compatible with a network in which only
selected nodes are programmable. Inbetween these active nodes, capsules are forwarded in
the same manner as regular IP packets. Rather than organize active nodes into an end-
system overlay, however, the ANTS architecture views them as special routers embedded in
the overall network topology. This has the advantage of allowing the nodes access to network
layer information that can be valuable for the construction of new services: routing and
topology information, packet loss events, and link characteristics. None of this information
is directly available to the nodes of an overlay.

This restriction is intended to match ANTS to the heterogeneity of modern networks. In
the Internet today, high-end routers in the backbone are valued in terms of their packet
per second throughput, and the addition of computation may have an adverse impact on
performance. Conversely, routers connected to access and wireless links tend not to be
capacity limited for economic or technical reasons that restrict the bandwidth of their links.

29

/@\ (P) protocol (unit of protection)

@ @ (G code group (unit of deployment)
Y IR

@@ @ @ (F) forwarding routine (unit of processing)

[code | dat a | (C) capsule (unit of transm ssion)

Figure 2-2: Capsule Code Abstractions and their Relationships

Define HASH (z) to be the fingerprint of the sequence z.

Let the forwarding type f; j» = HASH(F (i, j, k)) be the fingerprint of F (3, j, k),
the forwarding code of the ith capsule type of the jth code group of the kth
protocol.

Let the code group type gjr = HASH(f1 k- fn;k) be the fingerprint of a
code group comprised of n forwarding routines.

Let the protocol type p, = HASH (g1 4 - .. gm) be the fingerprint of a protocol
comprised of m code groups.

Then the fingerprint ¢; j, = HASH(f; jk,9jk,Pk) is the type of the ith capsule
of the jth code group of the kth protocol.

Figure 2-3: Calculation of Capsule Types

For these routers, the addition of computation in the form of new services may have a
beneficial impact on performance if it causes scarce bandwidth to be better utilized.

The result is that the capsule model can be implemented as though each new service were
provided by an its own overlay, only an overlay that is embedded within the network layer
instead of operating on top of it. The processing routines associated with services are
transferred to those active nodes that require them when the services are first used. This
dynamically creates the overlay-like structure. Subsequent use of services consists simply
of executing the cached routines as capsules arrive at the active node. This requires no
more than an extensible packet forwarding mechanism that maps a capsule type to its
corresponding forwarding routine and then executes the routine.

30

correspondi ng | P header i + ANTS- speci fic header i + higher layers

source |destination]|resource previ ous|t ype- dependent

address| address limt |Versionftypelzidress |header fields payl oad

capsul e

Figure 2-4: Key Features of the Capsule Format

2.1.3 Architectural Components

The architecture that realizes capsules and extensible packet forwarding is composed of
three related components. Each of these is described in greater detail in the subsequent
sections. Each component also introduces an abstraction of forwarding code as part of its
function. The relationship between these abstractions is shown in Figure 2-2. They are
described briefly here, rather than as part of each component, because knowledge of their
existence is intertwined between all three components.

e A capsule programming model is used to express new services in terms of customized
forwarding routines that are executed at active nodes.

e A demand pull code distribution protocol is used to deploy new services within the
network infrastructure. Code is transferred in code groups, collections of forwarding
routines that can refer to each other when executed.

e A node operating system is used to execute new services in a safe manner that prevents
unwanted interactions between services. The node separates service code in terms of
protocols, collection of code groups that are allowed to share state within the network.
This usage is consistent with the sense in which “protocol” was defined at the start
of this chapter.

In adding service extensibility to the Internet, the design of ANTS is geared towards pre-
serving the character of the basic connectionless datagram service provided by IP. As such
its components avoid a dependence on connection-oriented schemes, external resource allo-
cation mechanisms, centralized operations that limit robustness, and overheads that limit
scalability.

2.2 Capsule Programming Model

I describe the remaining details of the capsule programming model in three parts: the
format of capsules, their forwarding rules, and the node API that can be called from within
the forwarding routines.

31

2.2.1 Capsule Format

The architecturally significant features of capsules as they are carried across link-layer
channels, for example as Ethernet frames, are sketched in Figure 2-4. This figure shows
the type of fields that will always be present in an implementation and their approximate
grouping in terms of protocol layers. Each capsule carries the following fields:

e A source and destination address, which are analogous to IPv4 and IPv6 source and
destination addresses.

e A resource limit, which is analogous to the IPv4 Time-To-Live (TTL) or IPv6 Hop
Count field. Its use is described more fully in the section on the node operating
system.

e A version number, which identifies the ANTS version and implies the specifics of the
remaining fields that are common to all capsules.

e A type, which identifies the associated forwarding routine, along with its code group
and protocol.

e A previous address, which is used to transfer code within the network infrastructure.
Its use is described more fully in the section on the code distribution protocol.

e Other header fields, whose number and size varies depending on the type of capsule
as indicated by its type field.

e A payload, which contains the higher layer information that is opaque to processing
within the network.

The distinction between header fields that are analogous to those of IP and those that are
ANTS-specific is made in support of nodes that are not active. At these nodes, a default
forwarding service that requires IP field information is provided. It can be implemented
with existing IP routers by defining default forwarding to be identical to IP forwarding
and defining capsule formats to be an extension of the IP packet format. For example, the
ANTS-specific header could be identified as a higher layer protocol with the IPv4 protocol
identifier or the IPv6 next header, or as an extension of the IP header with an IP option
field. In this manner, IP and ANTS can be combined without introducing another layer of
addressing or duplicating mechanism such as that used to prevent forwarding loops.

Of the ANTS-specific headers, the key field is the type, which identifies the forwarding
routine, code group and protocol to which the capsule belongs. (Each of these bits of
information is needed to process the capsule at an active node, and it is not sufficient to
identify only the forwarding routine because one routine can be combined with others into
different code groups and protocols.) The requirements for the type are that it be unique,
easy to check, and easy to allocate. For these reasons, I have based it on fingerprints of the
associated code. In the ANTS toolkit, the MD5 message digest [Rivest, 1992] is used as the
fingerprint function.

The algorithm for calculating a capsule type is given in Figure 2-3. A straightforward scheme
would be to carry three fingerprints: one of the forwarding routine, one of all forwarding
routines in the code group, and one of all forwarding routines in the protocol. I refined
this scheme in two ways. First, code groups and protocols are identified with hierarchically

32

constructed fingerprints. This allows them to be safely used within the network where not
all of the associated code is available. (This is described as part of the code distribution
scheme.) Second, to eliminate the overhead of carrying multiple fingerprints, the three
fingerprints are further combined into a single compound fingerprint.

Defining capsule types in this manner provides them with two key properties that stem
from the properties of fingerprints:

e New types can be allocated quickly and in a decentralized fashion. This is because
fingerprints are effectively unique and the type depends only on the associated code;
one need only choose a fingerprint function with a sufficiently large range to make
the probability of a collision acceptably low. For a random 128 bit hash such as MD5
aims to provide, a collision is not expected until on the order of 264 fingerprints are
computed, a number far greater than the expected universe of network services. Given
this, new services can be supported by mutual agreement among interested parties,
rather than requiring centralized registration or agreement between all parties.

e Types form a secure binding between capsule and corresponding code. Assuming
the hash is one-way, this eliminates the danger of code spoofing, since each node
can rapidly verify for itself, without trusting external parties or requiring external
information, that a given set of code corresponds to a given capsule. (By one-way I
mean that a preimage cannot be found for a given fingerprint, nor a second preimage
for a given fingerprint and preimage. This is a much weaker property to require
than collision-resistance, by which I mean that two preimages that hash to the same
fingerprint cannot be found.)

If a collision were to occur such that these properties did not hold!, the association between
a capsule and its code would be ambiguous. This can be handled in two ways. An occasional
collision can be side-stepped by simply using slightly different code. This is facilitated with
a directory service that maps a service name (such as “IPv6”) to the latest collision-free
implementation. A systematic breaking of the fingerprint function, on the other hand, would
compromise the network until an entirely new fingerprint function is used. To facilitate this
and other incompatible changes, ANTS includes a version field in the capsule format.

2.2.2 Active Node API

So far, capsule processing routines have been described in the abstract. In reality, the kind
of routines that can be constructed depend on the active node API available to service
developers. For example, without the ability to store and access node state, individual
capsule programs will be unable to communicate with each other. Further, the compactness
and execution efficiency of capsule programs will be affected by the API. Both are enhanced
if the API is a good match for the processing, and degraded otherwise. For example, the
neighbors at a given node may be found either by walking the entire routing table looking
for adjacent nodes, or by asking the question directly of the node, depending on which API
calls are supported. The direct query can be represented compactly and executed efficiently
as a single APIT call, while the other program cannot.

!There is some evidence that the collision-resistance of MD5 may be broken in the foreseeable future
[Dobbertin, 1996, Robshaw, 1996], but to my knowledge no evidence that the one-way property is in question.

33

‘ Method ‘ Description
int getAddress() Get local node address
ChannelObject getChannel() Get receive channel
Extension findExtension(String ext) Locate extended services
long time() Get local time
Object put(Object key, Object val, int age) | Put object in soft-store
Object get(Object key) Get object from soft-store
Object remove(Object key) Remove object from soft-store
void routeForNode(Capsule c, int n) Send capsule towards node
void deliverToApp(Capsule c, int a) Deliver capsule to local application
void log(String msg) Log a debugging message

Table 2.1: Node API exported to capsule forwarding routines

This suggests that the node APT is an important research question in itself. In this thesis, I
address the question only so far as it relates to the main hypothesis. I provide the smallest
API that can be implemented efficiently and with which I am able to demonstrate that
many different, useful and short processing routines can be constructed. The choice of calls
is based on the experience with an earlier proof-of-concept active network, the ACTIVE IP
system [Wetherall and Tennenhouse, 1996, and early versions of ANTS.

The active node APT exported to capsule forwarding routines in the ANTS toolkit is listed
in Table 2.1. It provides calls in three main categories:

o environment calls such as getAddress() and time() return information about the
local active node environment. Many similar calls, such as those that enumerate the
local default routing table or examine forwarding statistics, can be added as they are
needed in practice.

e storage calls, namely get (), put () and remove (), manipulate a soft-store of application-
defined objects, including other capsules. Unlike a reliable store, objects placed in the
soft-store are not guaranteed to be present after the forwarding routine completes;
to simplify programming, however, they are guaranteed to be retained for at least
this long. The objects are cached to retain those in regular use and so improve
performance, and expired after an application-defined interval to ensure that stale
information will not be retained in the network. Objects are also separated by service
using the protocol type.

e control operations direct the flow of capsule processing and its propagation to other
parts of the network. routeForNode () forwards a copy of a capsule towards a node
using default routes, decrementing the remaining resource limit in the process. Cus-
tom routing services typically express their routes in terms of default routes, since
this is a robust way to navigate the network. deliverToApp() delivers the capsule to
a local application. If neither of these two functions are called for a capsule (either
during its forwarding or after it has been placed in the soft-store) then it is discarded.
log() signals informational or error messages to the node, which can also result in
subsequent processing.

I chose each category because it is fundamental in some sense, yet still open to an efficient

34

implementation. The omission of any category would greatly limit the type of new services
that could be expressed, since the calls of one category cannot be synthesized from the calls
of the others. Each category is intended to support new types of service with the minimum
runtime cost at nodes within the network. Two decisions illustrate this bias towards a
simple and minimal API.

First, the node state accessible via the soft-store is defined to be soft-state [Clark, 1988].
This means that its stability is not guaranteed, and so network protocols must be designed
so that the loss of this state does not affect their correct operation (though it will typically
impact their performance). Reliable storage would appear to simplify the design of some
new services, but is more expensive to implement. What is more, soft-state is fundamental
to the design of networks for good reason. Hard state does not solve the problem of node
state that is no longer accessible because of a change in connectivity or routing patterns.
Further, it introduces the potential problem of stale session information being retained in
the network due to partial failures. Given these tradeoffs, ANTS is based on soft-state that
is expired after an interval defined by the service developer.

Second, there are no timer functions. Timers are often included in other protocol construc-
tion kits, for example, the x-kernel [Hutchinson and Peterson, 1991], because they have a
straightforward application to the implementation of reliability functions. I decided not to
provide them because it proved possible to emulate them without complicating the active
node design; they could be added to a future version of the architecture as long as their
implementation is compatible with performance and security constraints. In the current
architecture, timers can be emulated by using the arrival of packets within the network as
timing events, effectively pushing the implementation of timers to within applications at
the edges of the network. For example, capsules can be merged for an interval at a network
node by combining them in the soft-store as they arrive and ending the collection operation
in response to the arrival of a “flush” capsule, rather than the expiration of a timer.

There are also some obvious categories that are likely to be part of a production system,
but are not required to explore the active network approach in the sense that, while their
omission will limit new services in particular areas, it will not affect the basic utility of the
programming model. For example, libraries for cryptography and transcoding will be useful
to support new security and multimedia services, both areas that are prime candidates for
exploration. A further set of API calls that interact with the node scheduler would enable
integrated or differentiated flow services. This area too is ripe area for exploration.

In conjunction with the abilities provided by the extensible forwarding model (to combine
these operations with “computational glue” and to carry and update customized packet
fields) these API categories are sufficient to support the kinds of new services outlined in
the introduction:

e Network characteristics can be discovered and new paths computed by using environ-
ment access functions in conjunction with header fields and controlled forwarding.

e Novel routing services can then be provided by using the soft-store to maintain newly
computed routes and controlled forwarding to follow them.

e Multicast or other replicated services can be provided by creating new capsules within
the network and having them follow routes maintained in the soft-store.

35

e Many-to-one suppression services can be constructed by using the soft-store in con-
junction with the controlled discard of capsules.

e More speculative services such as network-based caching and merging are enabled by
the ability to place capsules themselves in the soft-store.

2.2.3 Capsule Forwarding

The extensible packet forwarding model itself is driven around the capsule type, except at
non-active nodes where default IP forwarding is performed. At each active node that a
capsule reaches, the type field is used for demultiplexing to the corresponding forwarding
routine, which is transferred separately. This dispatch process is conceptually identical
to the demultiplexing performed using the Ethernet type and IP protocol fields within
traditional implementations of link-layer and IP endpoints. It is also a basis for capsule
forwarding that is known to be efficient from prior research on packet filters [Yahara et al.,
1994, Bailey et al., 1994, Engler and Kaashoek, 1996] and more recent research on “layer
four” switching techniques [Srinivasan et al., 1998, Lakshman and Stiliadis, 1998].

Once identified by demultiplexing, the corresponding routine is executed to forward the
capsule. This occurs within an execution model that is constrained in a number of ways that
are intended to lead to efficient implementation strategies and to simplify the development
of new services.

First, forwarding routines are permitted to run for a only short time, where short is de-
termined by the target capsule forwarding rate of the active node. Active nodes enforce
this handling by monitoring capsule runtimes. If the limit is exceeded, the node aborts the
forwarding in progress, purges the active node of state associated with that capsule type,
and maps that capsule type to default forwarding for future processing. This prevents both
inconsistent state from being retained and future disruptions, but is somewhat severe. To
allow new services to negotiate their processing requirements with active nodes more grace-
fully, a future version of the architecture might allow forwarding routines to specify hints,
such as the expected and worst case run lengths. In any case, the result of restricting the
runtime of forwarding routines is that processing is bound to those active nodes that are
capable of supporting it.

Second, only a small amount of state that is explicitly identified as mobile is carried with
the capsule. Other state must be explicitly stored at the node for later access or it will
be reclaimed by the active node runtime. This differs from other distributed programming
systems, where mobile agents represent ongoing computations that evolve as they migrate
through the network, rather than the transfer of inert information. In these systems, lan-
guage level mechanisms are often provided to control migration. For example, the “go”
directive of Telescript [White, 1994], packages up the state of the current computation,
transports the agent across the network, and resumes the computation where it left off.
Similarly, in Kali-Scheme [Cejtin et al., 1995] a thread of computation can be captured as
its continuation and lazily migrated between address spaces and machines at any time.

These mechanisms are too heavyweight for extensible packet forwarding because they can
require a large amount of state to be identified and transferred. Instead, ANTS allows
the service developer to define additional capsule fields that can be accessed inside the

36

network. These type-dependent header fields are defined along with the capsule forwarding
routine and interpreted only by that routine, not by other generic code executed at active
nodes. This mechanism allows service developers to structure evolving computations and so
support many forms of service that could not otherwise be expressed, for example, routing
or format conversion that depends on the congestion or latency encountered so far. Yet,
unlike mechanisms in more general systems, this mechanism can be implemented with a
minimum of runtime overhead.

Third, the external references that can be made by a forwarding routine are limited to those
that can be resolved locally. This means that the routine can be run to completion without
delay at each active node in the network. Forwarding routines can always make calls against
the local node via its API. In some cases, however, one forwarding may need to call into a
related one. For example, a capsule that follows a custom route may, within the network,
create and forward a related capsule that reestablishes the route if it finds that the route
is no longer fresh. For this call to succeed, the forwarding code of both types of capsule
must be transferred together so that all of the required code will be locally available. This
leads to the definition of the code groups — the transitive closure of forwarding code called
from forwarding code — that are transferred by the code distribution protocol as a means
of ensuring that local resolution of external references will succeed.

Drawing the line at late-binding between forwarding code makes a reasonable trade of gener-
ality for efficiency. ANTS already allows the type of a capsule, which determines the potential
processing that it can undergo, to be selected at the moment the capsule is injected into
the network. Disallowing the later binding of capsule type to processing within the network
seems to sacrifice little practical expressive power. On the other hand, this restriction does
simplify the implementation because it implies that forwarding routines will run to comple-
tion without stalling. When combined with bounded runtimes, this model provides the basis
for efficient implementation strategies (similar to IP on Unix uniprocessors) that sequen-
tially run forwarding routines to completion without requiring multiple threads or other
mechanisms for concurrent processing. Further, this restriction enhances network robust-
ness because it ensures that intermediate states that result from errors resolving external
references will not be observed.

Forth, the active node runtime ensures that it appears to the service developer as if cap-
sules are forwarded sequentially. (This is actually what occurs in the prototype. In an
alternative implementation it would be possible to parallelize forwarding in ways that are
consistent with this constraint, for example, with one thread of control per protocol.) This
model simplifies the task of the service developer because there is no need to acquire and
release locks during forwarding to protect against concurrency errors. It also simplifies the
implementation of the active node because there is no need to check service code to ensure
that deadlock and livelock are avoided and locks are released.

A final consideration is the handling of errors that arise during forwarding. Errors can
result from insufficient resources to transmit a capsule, the lack of a default route, and a
number of other conditions. To be efficient and robust, error processing must be handled
locally. Yet to facilitate recovery and debugging, errors must be related to the original
source of the capsule. In ANTS, errors that arise during forwarding are signalled locally
as exceptions. This ensures that service code has an opportunity to handle the situation
itself with alternative processing, or at least to place data structures in a consistent state.
The latter is important because node cleanup in response to an error is generic, and so

37

cannot ensure the integrity of service-specific data structures that persist across multiple
capsules. In any case, the node runtime catches exceptions that propagate beyond the
forwarding routine. If this occurs, the processing of the capsule is cleanly terminated (so
that associated execution state is released) and the node moves on to subsequent capsule
processing.

This local cleanup has proved sufficient for experimentation with the toolkit. In a production
system, it would be straightforward to extend this outer layer of error processing with
handling modeled after ICMP [Postel, 1981a, Conta and Deering, 1995], the control or
error protocol of IP. In this case, errors that are not handled would result in the generation
of an ICMP message to the source address carried by the capsule. ICMP safeguards, such
as rate limiting and the suppression of error messages in response to error messages, would
also be needed for robustness.

2.3 Code Distribution

Once a new service has been expressed in terms of capsules, it must be deployed within
the network infrastructure before it can be used. ANTS provides an automatic demand pull
code distribution system that makes it straightforward for an application to begin using a
new service. In this section, I describe the demand pull scheme, beginning with its design
goals.

Code distribution in ANTS is designed for traffic patterns for which caching is effective and
service code that is compact. The demand pull system transfers the code that implements
a new service to nodes along the path that a capsule using the service follows. The code
is cached at these nodes for later use. The scheme takes advantage of the small code
size to provide lightweight but unreliable transfer: code distribution will either succeed
rapidly, in which case the interruption to forwarding should be transparent to applications,
or occasionally fail, in which case the capsule that triggered the load mechanism will appear
to have been lost and must be recovered by applications using the network in the normal
manner. Experience with the ANTS toolkit suggests that code groups for real services can
be relatively small, typically less than 16 KB, and I assume this to be the limit of code
group size.

2.3.1 Design Goals

Code distribution is a new problem that arises in active networks but not the Internet.
Its overall goal in ANTS is to preserve the semantics of carrying code with every capsule,
while providing the performance and security properties achieved when the code is statically
loaded into all of the nodes of the network. The performance of the scheme is important
because, assuming the efficient execution of mobile code, the runtime overhead of using a
new service is directly related to that of the code distribution mechanism. The security of
the scheme is important because, if not well designed, code distribution activity may cause
the network to become unstable or vulnerable to attack.

I identified the following specific goals:

38

e Adapt to changing routes and node failures.
e Scale to large networks.

e Minimize the amount of code stored at nodes and the distance that it is transferred.
Ideally, a given forwarding routine would only be transfered once per network link,
and only to those active nodes that require it.

e Minimize the time that elapses from when a capsule arrives at an active node to when
the corresponding code is obtained. This latency directly extends the time that a
capsule can take to travel across the network.

e Prevent code spoofing and denial-of-service attacks. It should not be possible to use
the code distribution mechanism to attack the network.

e Not cause congestion.

The design of a code distribution mechanism that meets these goals depends on the char-
acteristics of new service deployment. Two extremes are possible. If deployment is rare, a
relatively static scheme that depends on management channels would be sufficient. If new
capsules almost always require new services, a fully dynamic scheme in which code is carried
with capsules would be required. The design of ANTS is geared to a situation inbetween
these extremes. I expect that most services will be invoked by many capsules, and so require
that the same processing be invoked many times at many different nodes. The basis for this
expectation is the existence of traffic flows in existing networks. Further, while an active
network allows potentially many services to be loaded for the purpose of experimentation
over time, it is likely that a small number of services will account for a significant fraction
of the total traffic at any given instant, especially given that real services would likely be
selected from third-parties rather than developed by each user. Together, these assumptions
suggest that code should be stored at nodes since the cost of its distribution can then be
amortized across a substantial number of capsules.

To store code at nodes, I first considered an explicit connection setup mechanism, but
abandoned it for three reasons. An explicit loading phase prior to use does not adapt easily
to changing routes. Nor does it suit new routing services, where the route a capsule will take
is not known before the customized forwarding routine is executed. Finally, it fundamentally
changes the network layer to be connection-oriented, which is a major departure from the
IP service model that has made the Internet so successful. I also avoided schemes that use
reliable connections, such as a TCP connection between each active node and a code server,
because of the difficulty of implementing a connectionless service in terms of a connection-
oriented one.

Instead, the strategy used in ANTS is to pull code along the network path that is followed
by a capsule with a connectionless protocol and as it is needed, and to cache the code at
active nodes while it is in use. To bootstrap this process, applications at the edges of the
network obtain the code that implements a new service before they begin using the service.
I refer to this style of code distribution as a demand pull scheme, and describe it in the
following sections. This scheme maintains code state along network paths while it is in use,
and might be thought of as a “soft” kind of connection. Like traditional connections, it
supports implementation strategies that benefit from the ability to amortize the overhead
of distributing code across many capsules, for example, just-in-time compilers. Unlike

39

traditional connections, it adapts to changes in routes and does not depend on reliable
transfer mechanisms or require an explicit setup phase.

2.3.2 Code Distribution at End-Systems

Code distribution for a new service begins at end-systems, where applications gain access to
the ANTS network. An application must first obtain the code that implements a new service
before it is able to use that service. By “code”, I mean all of the capsule forwarding routines
that implement the protocol corresponding to the service, along with the organization of
these routines into code groups. To perform this step, an application consults a directory
service that maps a service name, such as “Sparse-Mode-PIM”, to the corresponding service
code. In the ANTS toolkit, the directory is simply the local filesystem.

This mapping serves to separate interface from implementation. Applications refer to ser-
vices using high-level names that denote an interface to the network and are human readable.
Within the network layer, however, services are manipulated solely in terms of their cap-
sule types, which are based on fingerprints and directly name an implementation. In this
manner, the directory service can be used to automatically upgrade the use of a service
as it is debugged and improved by returning the latest version of its implementation. For
example, applications resolving the “Sparse-Mode-PIM” service might receive and then use
the implementation that corresponds to the most recent Internet Draft.

Once an application has obtained the required service code, it registers the code with the
local active node. The node is then able to compute the types that will be stamped on
capsules using the service as they enter the network, and has the code necessary to bootstrap
the deployment of that service within the network. At this stage, the application is free
to send capsules belonging to the new service into the network via the local node. These
capsules will trigger code distribution within the network as described in the next section.
Finally, when the application has finished using the new service, it should unregister the
code.

2.3.3 Code Distribution Within the Network

At nodes within the ANTS network, code distribution is invoked in response to the arrival of
an unrecognized type of capsule. The demand pull scheme is then used to draw code from
the previous node that the capsule visited, and cache it at the current node for future use.
I describe code distribution in terms of what code is distributed, and how code distribution
capsules are generated and processed by active nodes.

Transfer Format

The code that is distributed should satisfy several goals. It must be sufficient to forward
the capsule for which code is being loaded. It should be as small as possible so that code
distribution does not consume more resources than is necessary. Finally, it should allow the
fingerprint-based capsule types to be verified so that service code cannot be spoofed.

40

1

capsul e \ 2

request
ir esponse ‘
3

4"”/’//’
S 0 =7

code 4] — »
ar oup [capsuTe]
previous loading
node node

Figure 2-5: Transfer of Code Groups with the Demand Pull Protocol

1. A capsule is forwarded by an active node (the “previous” node) that pos-
sesses a copy of the corresponding code group. Before it is sent on an
outgoing link, the previous address header field is set to the address of
the forwarding node.

2. When the capsule arrives at the next active node (the “loading” node) and
the code that matches its type is absent, a load request capsule is generated.
It is sent to the node identified by the previous address field.

3. When the load request arrives at the previous node, a series of load response
capsules are generated. These carry the requested code group and other to
the loading node.

4. Asload responses are received by the loading node, they are reassembled to
form the requested code group and the result is checked. When reassembly
is complete the load is also complete, and the code group is then used to
forward the capsule that triggered the load sequence, as described in the
first step.

Figure 2-6: Steps in the Demand Pull Protocol

These goals lead to a transfer format based on the notion of code groups. Recall that the
extensible forwarding model requires that capsule processing run to completion without
stalling. This in turn requires that code for the capsule forwarding routine plus all other
forwarding routines that can be called from it be present. This leads to the definition of
a code group as the transitive closure of forwarding routines that can be called from each
other within the network. The minimum amount of code that can be transferred to satisfy
the first goal is thus an entire code group.

Transferring a code group by itself does not meet the last goal, the verification of the
capsule type, because the protocol type cannot be computed. To meet this goal, it would be
sufficient to transfer all of the forwarding routines in the protocol plus their arrangement into
code groups. Then all of the capsule types associated with the service could be computed
and compared with that of the capsule waiting to be forwarded. But this is excessive.

In ANTS, code is transferred in units of the forwarding routines that belong to the needed

41

define CACHE = (the code cache, keyed by capsule type)
define NODE = (the address of this active node)

CAPSULE = (a new capsule from the network)
ENTRY = (the entry in CACHE associated with CAPSULE.TYPE)

try {

forward CAPSULE with ENTRY.FORWARD // any outgoing capsule will
// have PREVIOUS set to NODE

} catch (code loading exception) {

if (ENTRY == null) {
ENTRY = (a fresh entry in CACHE) // can flush old code group
}

ENTRY.TRIGGER = CAPSULE // save most recent trigger
ENTRY.EPOCH = (current time)

REQUEST = (a fresh load request)

REQUEST.LOADTYPE = CAPSULE.TYPE

REQUEST.PARTS = (complement of ENTRY.PARTS) // ask for missing parts
send REQUEST to CAPSULE.PREVIQUS // REQUEST.PREVIOQUS set

Figure 2-7: Generation of Load Request capsules during forwarding

code group plus remaining code group types. Because a protocol type is defined only in
terms of code group types, this information is sufficient to compute the required capsule type
and prevent code spoofing. Since code group types are much smaller than the forwarding
routines of the code group, this format results in a significant savings in code size when
there is more than one code group.

A pragmatic issue that arose in transferring code groups is that of encoding calls between
the forwarding routines that make up a code group. This cannot be done directly in terms
of capsule types, because this would require that recursive fingerprint equations be solved.
Instead, calls are expressed in terms of local names that are embedded within the code
of the forwarding routine. These local names are linked only within the transferred code
group to prevent code spoofing as before. For example, one routine that constructs routes
may be named simply “producer,” while the other routine that follows them may be named
“consumer.” Any producer routine could be combined into a code group with any consumer
routine, while securely allowing calls between only the selected routines.

Demand Pull Protocol
The processing of code distribution capsules implements an unreliable transfer protocol that

is appropriate for small code groups. The common case loading sequence that the protocol
aims to provide is shown in Figures 2-5 and 2-6. Loading occurs in four steps: a capsule

42

define CACHE

= (the code cache, keyed by capsule type)
define REQUEST =

(the load request received from the network)
ENTRY = (the entry in CACHE associated with REQUEST.LOADTYPE)

if (ENTRY == null) return // no code present
if (ENTRY.FORWARD == null) return // or code incomplete

foreach i in (REQUEST.PARTS & ENTRY.PARTS) {

// send each requested part that we have
RESPONSE = (a fresh load response)
RESPONSE.LOADTYPE = REQUEST.LOADTYPE
RESPONSE.PART = i

RESPONSE.CODE = (part i of ENTRY.CODE)
send RESPONSE to REQUEST.SOURCE

Figure 2-8: Processing of Load Request capsules

is forwarded with the required code and has its previous address field updated; the capsule
arrives at the next node where the required code is not present, which causes a load request
to be sent to the previous node; the load request arrives at the previous node and a series
of load responses is generated to transfer the required code; and the responses arrive at
the loading node, where they are combined to obtain the required code and forwarding is
resumed.

I describe this demand pull protocol in detail by presenting pseudo-code for the processing
by active nodes of regular capsules, load requests and load responses. Besides the common
case, the pseudo-code specifies the handling of a number of different scenarios in which
code is loaded concurrently and capsules are lost or corrupted. In the pseudo-code, the
code cache of an active node is modeled as an associative store that maps a capsule type
to an entry. The entry is a record that has slots for several distinct kinds of information: a
forwarding routine, the code that is being loaded, a parts field describing the completeness
of the load, a trigger capsule waiting to be forwarded, and a timestamp. The cache is
managed in terms of code groups in a least-recently-used fashion.

The generation of load request capsules during capsule forwarding is shown in Figure 2-7.
Here, once a capsule arrives at an active node, its entry in the code cache is looked up using
the capsule type. Normally this entry will contain the required forwarding routine, which
was either previously loaded or supplied by a local application. In this case, the routine
is simply executed to forward the capsule. To support subsequent loading, the previous
address field of each capsule sent during forwarding is set to the address of the current
active node.

Code loading is the exceptional case that occurs when there is no complete entry in the
code cache. If no entry exists at all, it is created, possibly evicting an old code group from
the cache in the process. This action corresponds to the first load attempt for a given type
of capsule. Otherwise, if an incomplete entry exists, a previous load attempt has not yet
succeeded. In either case, the capsule that triggered code loading is stored as part of the

43

entry, along with a timestamp, while the load proceeds. Note that storing the most recent
trigger capsule implicitly discards any older trigger capsule; it has been lost in the network.
This mechanism limits the buffering needed at active nodes.

define CACHE = (the code cache, keyed by capsule type)
define RESPONSE = (the load response received from the network)

ENTRY = (the entry in CACHE associated with RESPONSE.LOADTYPE)

if (ENTRY == null) return // no load in progress
if (ENTRY.FORWARD != null) return // already complete

add part RESPONSE.PART to ENTRY.CODE
ENTRY.PART = (ENTRY.PART | RESPONSE.PART)

if (ENTRY.PART == (all parts)) { // last one arrived

0K = (verify fingerprints for ENTRY.CODE match ENTRY.TYPE)

if (10K) { // code is corrupt
delete ENTRY // so purge it
return

}

// install all routines in the loaded code group
foreach forwarding routine i of type t in ENTRY.CODE {
E = (the entry in CACHE associated with t)

if (E == null) {
E = (a fresh entry in CACHE)
E.TYPE = ¢t

}

E.FORWARD = i
E.CODE = ENTRY.CODE

// forward any waiting capsules
if ((E.TRIGGER != null) && ((E.EPOCH - (time)) < 1 second)) {
forward E.TRIGGER with E.FORWARD
E.TRIGGER = null
}
}
}

Figure 2-9: Processing of Load Response capsules

Next, a load request capsule is constructed. It identifies the missing code by carrying the
capsule type that triggered the load, along with a parts field. The latter field is used to
allow multiple loads to each make incremental progress. It identifies the missing parts that
have not already been transferred. In the case of an initial load it has a value representing
all parts. In the toolkit, this field is implemented simply and efficiently as a bit vector.
The load request is then sent to the node carried in the previous address field of the trigger
capsule. Once this is done, the active node can continue with the task of processing other

44

capsules. All of the state necessary to continue loading is stored in the code cache, and the
node need not suspend execution or set any timers.

The processing of load request capsules is shown in Figure 2-8. When a load request is
received, the code cache is checked for an entry corresponding to the requested capsule
type. It is highly likely that this entry exists and is complete because the code was used
recently to forward the trigger capsule. In this case a series of load response messages is
generated, one for each part that is requested and available. Each part is self-describing
in the sense that it has sufficient information to be processed as it is received without
depending on other parts. The parts are sent to the origin of the load request capsule. In
the rare case that the requested code is not present, the load request is simply discarded.
In this and other situations that will occasionally arise (such as the loss of a load request
or response capsule or transfer of corrupted data) the load sequence is permitted to fail.

Thus in an ANTS network there is an additional form of loss, besides congestion and bit
errors: capsule loss due to code distribution failure. When this loss occurs, applications
using the network will detect it and respond (as they already do for other forms of loss)
to provide whatever level of reliability is appropriate. The active network must clearly
be engineered such that this form of loss is infrequent to provide a useful basic service.
Nevertheless, I believe that exposing code distribution failures to applications rather than
attempting to hide it within the network will ultimately benefit network performance.

The processing of load response capsules is shown in Figure 2-9. As each arrives it is
merged with the code that is already present. First, the code cache is checked for an entry
corresponding to the type of code carried by the response. If none is found or the code
is already complete, the response is discarded. Otherwise the part information is used to
merge the code it carries with that already in the cache. If the code is now complete, the
entire load can be completed and the trigger capsule forwarded.

Before activating the code, its fingerprint-based types are computed and compared with the
capsule type that triggered the load sequence. If they do not match, the code is corrupt,
and the entire entry in the code cache is deleted. Otherwise, the entry in the code cache
is completed with the corresponding forwarding routine, and further entries are created
for each other forwarding routine in the code group. Finally, the forwarding routines are
executed to forward any trigger capsules that are waiting in the code cache. Before each is
forwarded, the delay it has incurred is checked. If the delay exceeds a fraction of the network
lifetime (one second is used here) the capsule is discarded. This check greatly reduces the
hazard of an old capsule being delivered by the network.

Other Considerations

In addition to the processing described, there are several other considerations that are only
partially addressed by the ANTS architecture until there is more experience with large scale
active networks: loss and congestion; thrashing and livelock; and denial of service.

Since the protocol is unreliable, there is a chance that code distribution will fail and the
capsule be lost, even if code groups are small and transfers infrequent. Loss due to band-
width congestion becomes a concern when code transfer sizes become large relative to the
available network buffering or loading activity begins to consume a significant amount of

45

network bandwidth. In this case, load adaptive mechanisms should be explored, for ex-
ample, TCP slow-start. Even in the case that code transfer does not cause congestion,
the probability of loss increases with the number of messages sent because the network is
shared with other traffic. Concerns about loss will ultimately limit the code transfer size
to a small number of messages. If the level of loss is problematic, mechanisms that isolate
code transfer traffic (RED, WFQ, priorities) or increase its redundancy (FEC) should be
explored.

Loss and congestion effects are limited in the ANTS toolkit simply by limiting the maximum
code group size to 16 KB. This limit is large enough that a variety of new services can be
explored, and small enough that demand loading is plausible.

A separate concern is that loss not adversely interact with the assumptions of the transport
layer protocols that use the network. For example, TCP congestion control mechanisms are
known to interact poorly with wireless media, where a significant amount of loss can arise
from bit errors rather than congestion. These kind of effects are unlikely to be significant
in ANTS because the vast majority of code distribution failures are expected to occur in
response to congestion. It is important, however, that repeated load failures do not occur,
because they may cause an application to falsely determine that a host is unreachable.
This is unlikely to be a problem in ANTS because code loading is able to make incremental
progress. This means that in the rare case the first load does not succeed, the second is
significantly more likely to succeed.

As with any cache, thrashing can occur if the “working set” of code groups does not fit

in the code cache. In the extreme, livelock is possible if concurrent loading activity causes
partially loaded code to be evicted from the cache. Neither of these behaviors will occur
for the traffic patterns I have targeted and in a properly engineered network, and so no
protection against thrashing is built into the ANTS toolkit.

Nonetheless, it is desirable to prevent thrashing in a large-scale network in order to guarantee
that the network is robust. This requires that load be shed when it exceeds the sustainable
number of new services in use, for example, by returning an ICMP-style error message.
One possibility for future versions of ANTS is to to enforce a minimum caching time for each
code group, as measured from the first moment of loading activity for that code. Such a
minimum lifetime translates into a maximum rate of cache turnover. An alternative would
be to retain code while it is in use, that is, not evict code until it has been idle for a specified
time. Compared to a minimum caching time, retaining code while it is in use improves the
stability of existing services at the expense of the ability to introduce new services under
high load.

Finally, it should not be possible to use the code distribution system to mount a denial
of service attack on the network, for example, by causing large amounts of code loading
activity or consuming a large portion of the code cache. In ANTS, some protection is afforded
by the hop-by-hop nature of the code transfer path. With the demand-pull protocol, code is
loaded at each hop along the path beginning at the node where an application first injected
a new type of capsule into the network. This means that a distant node cannot be attacked
without first attacking a neighboring node, and so the potential for anonymous attacks in a
large network is greatly reduced. Further, the hop-by-hop path provides a basis for tracing
the path along which code is loaded. (This line of reasoning also requires that applications
cannot make code loading capsules “materialize” in the middle of the network. The node

46

operating system enforces this restriction.)

In the toolkit, hop-by-hop loading is enforced by processing code capsules at the first node
that they encounter, rather than allowing them to continue on to a further destination. This
suffices because all toolkit nodes are active and so all transfers occur between adjacent nodes.
The implementation of this strategy is more complicated in networks with asymmetric
routes and relatively few active nodes. This is because the route from one active node to
the previous may legitimately pass through a third active node because of the asymmetry.
If this is a problem in practice, the request and response capsules can be authenticated to
check they originated at neighboring nodes.

2.3.4 Properties and Extensions

Though it has a straightforward design, the demand pull scheme possesses a number of
important properties. At a high-level, it provides an adaptive connection setup that is
compatible with new routing services. It is scalable, since it draws code along network
paths, growing a neighborhood where it is in use, rather than attempting to deploy new
code into an entire region of the network. The use of fingerprint-based types prevents code
spoofing without depending on digital signatures and shared public key infrastructure. The
hop-by-hop nature of the protocol limits the scope of denial-of-services to adjacent active
nodes.

More subtly, by following the path of the capsule and exposing losses during code loading to
the application, the scheme limits bandwidth consumption and latency. By bounding these
quantities tightly, I expect that code loading activity will be transparent to applications
using the network, being below the “noise” threshold. This is not necessarily the case
for other solutions, such as loading code from well-known remote servers or with reliable
transports. Section 5.2 contains an analysis of these considerations. The properties are:

e The bandwidth consumed by the network in response to a capsule of unrecognized
type arriving at a node is limited to be M + 1 message-hops, where M is the size of
the maximum code group in messages and a hop is the distance between neighboring
active nodes.

e The latency to load code is roughly the round-trip time if the hop is long in terms of
messages, or M + 1 times the latency to send a capsule if the hop is short in terms of
messages. Again, M is the size of the maximum code group in messages and a hop is
the distance between neighboring active nodes.

There are also some extensions to the basic protocol that could be incorporated once there
is sufficient experience to suggest that they will be worthwhile.

e When default routes are followed, code can be loaded into multiple network nodes in
parallel by forwarding code from one node to the next before it is fully assembled.
This strategy can be supported in a more general fashion than strictly default routes
by allowing a capsule to carry a small amount of code that enters other code into the
local node cache. This facility can then be used to construct capsules that “prime”
a path with code. Loading in parallel would reduce the latency of loading, especially
for larger code groups that flow along long paths.

47

e Code can be speculatively transferred from one node to the next by using heuristics.
For example, when one node must load the code for a new service, it is reasonable
to assume that subsequent nodes will need to load the same code, and so it can
be transferred after the capsule is forwarded but before it is requested. Speculative
transfers would reduce load latency by a small amount at the cost of some redundant
code transfers.

2.4 Node Operating System

Once a new service has been deployed, it must acquire network resources in order to be of
use. A key difficulty in designing an active network is to allocate resources to services as
they execute while preventing unwanted interactions. Not only must the network protect
itself from runaway protocols, but it must distribute resources between co-existing protocols
and offer them an independent view of the network.

The node operating system performs these tasks. Rather than implement capsule processing
on top of a Unix-like operating system in terms of time-sharing and address spaces, active
nodes rely on a specialized operating system. It provides sharing and protection mechanisms
that are tailored to extensible forwarding, and so support it in a manner that is compatible
with high levels of performance. Capsule processing resembles a system in which there are
many short-lived tasks that are performed on behalf of many simultaneous users. Operating
system mechanisms must be able to run at the capsule forwarding rate to perform well in this
domain, and so must require minimal initialization. This excludes heavyweight processes
and login schemes. Instead ANTS is built around safe evaluation techniques and fingerprint-
based separation of state.

Several threats must be addressed. Nodes must ensure that service code cannot corrupt
them, interfere with other service code, or consume an excessive amount of network re-
sources. It is important to guard against both accidental errors and malicious attacks. This
is because the network is a large system shared by many users, in which some accidental
errors are inevitable, and some users are bound to be malicious. My goal has been to
accommodate service designers who are not trusted and enforce protection and arbitrate
resource consumption with mechanisms inside the network infrastructure. My approach has
been to build on safe execution techniques to the extent possible, rather than infer safety
through trust relationships. This is because authentication and authorization schemes are
vulnerable to accidental errors as well as difficult to manage in a large network in which
many parties act independently.

I describe the node operating system in terms of its protection mechanisms that isolate
faults, and its resource management mechanisms that prevent services from monopolizing
the network.

2.4.1 Protection

A protection model isolates services so that they are unable to influence the behavior of
each other in unintended ways. In ANTS, this requires mechanisms for ensuring the integrity

48

of the active node runtime, and separating the code, node state, and capsules of different
services.

I rely on recent safe execution technologies to ensure that the node is not corrupted while
executing untrusted service code. Recent advances in operating systems and programming
language technology have the potential to implement protection mechanisms with execution
efficiencies that are comparable to embedded native code. They are especially useful for
active node design because they support tight coupling between protection domains and
most work is done only once at code loading time. In contrast, traditional address space
protection is not effective for tightly coupled domains and performs all work at runtime.
Three developments illustrate this progress.

e Software-based fault isolation (SFI) [Wahbe et al., 1993] provides a means of im-
plementing address space-style memory protection in software by inserting run-time
checks into binary programs. Compared with hardware fault isolation, it trades a
small run-time overhead for a greatly decreased cost of crossing the isolation bound-
aries. The overhead of this scheme depends on how frequently isolated code interacts
with other modules and the form of safety required, but is typically less than 20%. It
is possible to insert the run-time checks at load time, an approach that is used as the
basis of the Omniware mobile code system [Adl-Tabatabai et al., 1996].

e Java bytecodes allow efficient interpretation [Gosling, 1995]. Aspects of the individual
bytecodes (the incorporation of high-level type information) together with its approved
usage (a single type-state of the stack along all execution paths) allow rapid load-time
verification of a number of properties (no stack overflow or underflow). Once these
properties are checked at load-time, further checks can be omitted at run-time to yield
a more efficient execution that does not sacrifice safety.

e Proof-carrying code (PCC) [Necula and Lee, 1996, Necula and Lee, 1998] combines
a program with a formal proof that it respects a safety policy, such as type-safety.
The proof is generated from safety properties that are checked by the compiler. Since
it is generally more efficient to check a proof than to generate it, PCC provides a
relative efficiency when a program is to be evaluated many times. Since proofs can
be generated for restricted C and assembly language programs, and no additional
runtime overhead is incurred, this approach can be very efficient.

The ANTS architecture uses these kind of mechanisms to provide efficient memory and type-
safety. The ANTS toolkit, for example, is written in Java. The focus of the design effort
pursued here is on how to extend this level of safety to other forms of protection and resource
management, rather than on how to improve its baseline efficiency.

To separate service code, the ANTS architecture enforces a basic form of protection suggested
by the capsule programming model: each capsule is authorized to determine its handling,
but not the handling of other capsules. This handling is specified by the value of the type
field that is stamped on each capsule as it enters the network. Because of the definition
of type values, the associated forwarding code is identified unambiguously, and is already
specified in full. That is, the meaning of a capsule computation is fixed at the moment it is
injected into the network, regardless of the actions of other parties. This form of protection
is enforced by the code distribution system.

To separate node state, one possible approach is to sign and authenticate every capsule

49

against a principal. This would allow the active node to enforce a protection model whereby
state maintained on behalf of a principal could only be manipulated by that principal or
other principals on an access control list. However, compared to the Internet today, this
scheme would impose a computationally expensive step at a very low level in the system.

Instead, ANTS provides service-based protection model that is analogous to existing pro-
tocols in the Internet: capsules can only manipulate state associated with the protocol to
which they belong. This is implemented by using capsule types as names that partition the
soft-store at active nodes. This scheme is computationally inexpensive, since the types are
already provided by the programming model. The security properties of fingerprints provide
a probabilistically strong guarantee that it is not feasible to construct different forwarding
routines that share the same capsule type.

The basic functioning of the system is simple. Forwarding routines that need to share
state within the network are combined (in terms of their code groups) into a protocol. For
example, one forwarding routine may be used to construct specialized routes, while another
may be used to follow them. Both routines should be treated as a single unit of protection
within the network. This is achieved by computing protocol types as described in Figure 2-
3. Objects placed in the soft-store are marked with the type of the corresponding protocol,
and can later be manipulated only by forwarding routines that belong to the same protocol.
Note that this model benefits from node storage that is automatically expired, as opposed
to the “hard” or persistent state that is used in a distributed filesystem. This is because
state cannot be manually removed after it is created unless provision was previously made
when defining the protocol. To further support a simple form of sharing across different
protocols, the forwarding code that belongs to a given protocol can selectively mark its
state world readable and/or writable.

By the definition of types, once a capsule type is calculated, the contents of the correspond-
ing protocol are fixed. This means that new forwarding routines that purport to belong to
it in order to manipulate its data in a different manner are disallowed, and it cannot be
extended by any party so that new types of capsule can manipulate old state that exists
within the network. Any extension appears to be a new service to the network, and so is
isolated from the previous definition.

The model is further enhanced by restricting the ability to create arbitrary capsules at
arbitrary places in the network. This is because the arrival of a capsule at a node generates
a call that manipulates node state, and limiting where calls can be made increases the
utility of code-based protection. In the Internet today, for example, UDP packets cannot
be transformed into ICMP informational messages just before they reach their destination.
If they could, then network attacks such as ICMP smurfing? would be easier to mount. The
analogous behavior is straightforward to provide in ANTS by using active nodes to restrict
forwarding code in two ways:

e It cannot create capsules of another service.

e It cannot mutate capsule types to leave the original service.

When these rules are added, the ANTS protection model mimics the implicit protection
model of Internet protocols and packet forwarding. Like the Internet, this model does not

2See CERT Advisory CA98-01, Smurf IP Denial-of-Service Attacks, January 1998.

50

place any restriction on which host can send what type of capsule. Nonetheless, the overall
model does prevent the construction of some classes of service that would pose security
problems. It is not possible, for example, to create a new service that:

e Searches the network and discards capsules belonging to another service. Each capsule
determines its own forwarding.

e “Spoofs” capsules at arbitrary network locations. Capsules must travel through the
network from source to given location in a legitimate manner.

e Constructs a capsule that accesses the state of another service, capturing private
information. The types of capsule that can manipulate service state are fixed when
the service is constructed and cannot be extended within the network.

This last example highlights the tension between protection and composition of services. By
preventing the definition of a service from being modified, an individual service is protected,
but the means by which users can effect a composite service, for example, multicasting
plus path MTU discovery, has been limited. In ANTS, this tension is partially resolved by
providing protection within the network and composition at the edges. Composite services
can be formed at any time by combining the corresponding set of forwarding routines. The
composite service is then assigned new type by the fingerprint-based naming mechanism,
and so is treated by the network as an entirely different service. Similarly, new versions
of a service are treated within the network as separate services. This scheme is workable
but has the drawback that composed services cannot share state within the network, even
when they share code. World-readable protocol state helps, but does not solve this problem.
Suggestions for the evolution of the existing model to a file system model are given in the
future work portion of the conclusion.

The ANTS model contrasts with the protection model typically supported by filesystems. In
a filesystem, principals are typically users, and the sharing of state is specified in terms of
a small number of common operations, such as read versus write permission for specified
users. In ANTS, the principal is effectively a set of code. This code encapsulates the state,
so that it can be manipulated by sending capsules, but only in ways allowed by the code,
since it guards the associated state. That is, rather than protect state by authorizing each
access, we protect state by authorizing each type of manipulation. This is equivalent to the
protection implicit in network protocol implementations today, despite the fact that it is
implemented in terms of untrusted mobile code.

If stronger protection is required, authentication and authorization checks can be layered
on top of this basic protection by including them as part of the forwarding routine. This
approach would allow, for example, the join and leave operations of a multicast service to
be restricted while not slowing send operations. Since send operations are expected to be
much more frequent than join and leave operations in the same manner that signaling is
infrequent compared to data transfer, this strategy increases security without significantly
affecting performance. Trading occasional updates that are restricted for frequent access
that is unrestricted is likely to be common. For example, the process that maintains the
default routing information must restrict its updates (since many services depend upon
them) but need not restrict its use otherwise (since all services are permitted to use default
routes via the node APT).

ol

2.4.2 Resource Management

The protection model separates the state of different protocols, but does not ensure that
network resources are allocated in a reasonable manner. As well as bandwidth, several
different types of node resources must be managed: capsule processing time, the soft-store,
and the code cache. The latter is managed by the code distribution protocol. Additional
mechanisms described here control the allocation of the other resources, both at individual
nodes and across a group of nodes. In the design of these mechanisms, the emphasis was
on lack of starvation (in the sense that the design allows each protocol to make progress)
rather than fairness. This pragmatic decision reflects the operation of existing networks,
in which mechanisms such as FIFO queuing and RED gateways allow the network to be
reasonably utilized but do not ensure that resource allocation is fair.

Given that the basic network service is connectionless and lacks resource reservations, all
resources must be allocated implicitly by the flow of capsules. To accomplish this, I treat
all resources as rate renewable and limit their consumption on a per capsule basis. This ap-
proach is straightforward, yet effective if treated as a mechanism to prevent gross imbalance
rather than to perform precise accounting. Processing time and link bandwidth are already
rate resources. Soft-storage is converted into a rate resource by treating the soft-store as a
cache and evicting old objects when new storage is needed.

Processing time is allocated at each node by allowing each capsule to execute for the time
accepted by the node. Preferably, it will prove feasible to enforce this limit statically, either
with a restricted language approach similar to [Deutsch and Grant, 1971] or by using proof-
carrying code techniques [Necula and Lee, 1996]. In the prototype, the limit is implemented
dynamically with a timer. This requires that care be taken when aborting long running
computations to ensure that protocol data structures are left in a consistent state.

Bandwidth and soft-store are allocated across all nodes by carrying a resource limit field
with each capsule. The resource limit field functions as a generalized form of the TTL
(Time-To-Live) field in IPv4 or the Hop Limit field in IPv6. It is decremented by nodes
as capsules are sent and objects are put into the soft-store, and capsules are discarded
when the value of this field reaches zero. For this limit to be meaningful, only nodes can
alter this field. Further, in order to reason about total resource bounds, resources must
be transferred when one capsule creates another inside the network, rather than simply
manufactured anew. ANTS decrements the resource limit of a capsule by one before it can
create another capsule within the network. Since this behavior is compatible with that of
the TTL and Hop Limit fields in IPv4 and IPv6 today, a single combined mechanism can
be used to prevent infinite loops across both active and non-active nodes.

These mechanisms prevent too many resources being consumed by one capsule at an active
node, and prevent program errors that cause infinite loops across many nodes. They do not,
however, guarantee that network resources will be consumed in a reasonable manner. To
see this first requires a definition of “reasonable”. I postulate that the resource consumption
of one capsule is reasonable if it visits each node no more than £k times, assuming there are
no loops in the standard routing tables, and where £ is a small number such as one or two.
This definition readily allows multicast services and accommodates Internet protocols, but
disallows loops and flooding behavior such as ICMP smurf attacks. I refer to protocols that
satisfy this definition for some value of k£ as k — bound.

92

The use of TTL schemes to achieve this definition of “reasonable” fails because it does
not provide a tight enough bound on global resource consumption and it does not prevent
activity from being concentrated on a small region of the network. The bound is not tight
because the resource limit of a capsule is simply decremented and copied when one capsule
creates another within the network. The total resource limit that can be consumed can
therefore be multiplied through exponential growth. ANTS uses this definition of resource
limit despite this weak bound because it readily extends from unicast to multicast schemes
and is compatible with Internet behavior today.

To tighten the bound, an alternative that I considered is the strict division of resource limits
between an existing capsule and freshly minted ones within the network. This rule implies
that the total resource usage is bounded by the resource limit of the original capsule as
it enters the network. Though it appears a useful property for bounding global resource
consumption, it is rendered ineffective by multicast: to support a large multicast session
the limit needs to be unreasonably large. For example, to reach around 1000 receivers at
a distance of 10 hops, a limit of around 2000 is needed. A limit this large can cause much
harm if one capsule divides and bombards a small number of receivers. Further, strict
division is complicated in practice by the need to manage information on how to divide
resource limits, given that distribution trees are not generally balanced. Without division
that is matched to a distribution tree, the tightness of the bound is weakened. For example,
if the tree is unbalanced such that there are twice as many branch points on the longest
path, then the naive strategy of sharing the resource limit equally at each branch point
will require a resource limit that is the square of the resource limit needed if division were
matched to the tree.

Further, a TTL scheme cannot prevent resource consumption from being concentrated at a
small number of nodes even in the case that a capsule is not replicated as it travels through
the network. This is because a capsule must be stamped with a resource limit that has a
reasonable margin of safety, since it is not generally known whether it must travel across a
large portion of the network or to a neighbor. It is therefore possible to construct a malicious
service that routes a capsule until it reaches a particular node and then proceeds to loop
the capsule between that node and an adjacent one until the resource limit is exhausted.
With a maximum resource limit of 255 (corresponding to the 8 bit field used in IP) the
forwarding work of roughly 100 capsules could be inflicted on a target node for the cost of
one capsule at the sending node.

A better scheme is therefore needed to limit global resource consumption. Prior work in this
area is limited, with other systems typically relying on quotas, peer-pressure, or centralized
control. ANTS protects against poorly designed services by requiring that service code by
certified by a trusted authority with a digital signature before it can be freely executed.
The purpose of this signature is to vouch that the protocol will not use network resources
in a harmful manner. Service code that is not certified can still be safely run at a reduced
level of performance by restricting all such code to use no more than a small amount (say
10%) of the available bandwidth. In this manner its impact on the network is limited.
Alternatively, code that is not known to be trustworthy can be mapped to the default
forwarding service. These mechanisms are abstracted in the ANTS architecture into a node
security policy because their form can very depending on local administrative requirements.
As long as the mapping from code to forwarding method is relatively stable it will not affect
the ability to program the network as a whole because the notion of heterogeneity is built

93

into the design of the programming model.

Despite requiring that service code be certified, ANTS provides a system that is capable of
evolving much more rapidly than is possible today. This is because certification differs from
standardization in that it does not seek to define a single preferred behavior. Rather, it seeks
to establish that a service makes reasonable use of overall network resources, regardless of
whether it is considered an effective means of accomplishing a particular task. The ability
to run new but not yet certified services at a reduced level of performance simultaneously
allows for rapid experimentation. Nonetheless, this mechanism differs in character from
other aspects of the node design and is a candidate for further research. It relies on trust,
which weakens security, and runs counter to the philosophy of active networks in that it
depends on a centralized authority, which slows innovation.

In the long run, the issue of global resource consumption may be less important as more
sophisticated scheduling algorithms, for example, RED and fair queueing, provide better
separation between flows. Further, it may be possible to automatically prove that certain
capsule program forms are safe for use. For example, routines that forward to a fixed address
and do not send more than one capsule clearly satisfy the definition of “reasonable”, and
this program form can easily be recognized. Though it may sound restrictive, this form can
express selective discard, congestion notification and network merging services.

2.5 Deployment Considerations

Ironically, before a flexible architecture can be exploited to introduce new services, it must
first be introduced as a new service available in the Internet. The focus of this dissertation
is on the properties of a fully deployed ANTS network, rather than a transition plan to
deploy it in the first place. Nevertheless, ANTS was deliberately designed to lend itself to
incremental deployment as a means of constructing a large-scale active network that is part
of the Internet.

The two restrictions on the capsule model that support extensible packet forwarding also
support incremental deployment. First, since a mix of active and non-active nodes is
permitted, it is straightforward to deploy an ANTS network by incrementally activating
nodes. These nodes are likely to begin with end-systems, along with routers connected to
bandwidth-limited wireless and access links, and followed by increasingly high performance
internal routers. As more nodes are activated, especially those at strategic locations, the ef-
ficacy of introduced services will rise. For example, a greater number of potential branching
points will lead to an increase in the bandwidth savings of a multicast service.

Second, though provision is made for the dynamic loading of new services, there is no reason
that the cache cannot be pre-loaded or primed with services that are likely to be used. This
allows popular services to be configured and optimized as trusted code in order to deliver
high levels of performance on a given platform.

Further, it is possible to benefit from the combination of these strategies by constructing
routers that are active for selected services and not active otherwise. This can extend
the performance range of active nodes because compute intensive services that are not
dynamically loaded because they cannot be forwarded at the line packet rate might instead
be statically loaded if capsules that use them are expected to arrive infrequently. This is

o4

analogous to the way that ICMP and other services are handled separately from the IP
“fast path” in high-bandwidth routers. This line of reasoning suggests that hybrid active
node implementations, for example, a PC that is attached to an IP router and receives
packets via a filter, will be useful for combining the performance of high-end routers with
the flexibility of programmable services.

95

o6

Chapter 3

The ANTS Toolkit

The description of the ANTS architecture in the previous chapter sketched the main compo-
nents of a system and their function, but left unspecified details of their use and implemen-
tation. In this chapter, I describe the design of the ANTS toolkit, a reference implementation

that provides one concrete set of answers to such questions!.

The toolkit is written entirely in Java as a class-based framework. Each node and its
locally connected applications are run in a single Java virtual machine, typically as a user-
level process on a Unix-based operating system. Note that, for reasons of convenience,
the toolkit is not built as an extension of an existing IP implementation, but rather as a
complete network layer that uses the services provided by the standard Java libraries.

The intent of building the ANTS toolkit was to allow the suitability of the active network
approach to be evaluated. I have used it to experiment with the Web caching and multicast
protocols that are described in the next chapter. It has also been used by others to study
novel protocols: an auction service [Legedza et al., 1998]; a reliable multicast protocol
[Lehman et al., 1998]; a network-level packet cache [Johnson, 1998]; and a defense against
TCP SYN-flooding [Van, 1997].

In the remainder of the chapter, I describe the toolkit design and implementation along
two lines. First, I describe the interfaces of the key Java classes from the point of view of
a network programmer, including an example of how the interfaces are used to introduce
a new service. Second, I describe the implementation strategies and decisions underlying
the toolkit, as well as issues that are not fully addressed in the current mapping between
architecture and implementation.

3.1 Overview of Key Interfaces

The ANTS architecture defines the concepts of active nodes that are connected by channels
to form a network, and capsules that are injected into the network by applications and
forwarded through it with customized routines. In the ANTS toolkit, these concepts are
mapped to the Java classes shown in Figure 3-1 and described in the following paragraphs.

'The ANTS toolkit is available in source code form at http://www.sds.lcs.mit.edu/activeware.

o7

END- SYSTEM END- SYSTEM

<& <=
ACTI VE

; ROUTER ;

protocol : pr ot ocol

i extension i extension :
channel :, channel ,; :: channel ;
capsul e] —> — [capsul e

END- TO- END

NETWORK

LI NK

Figure 3-1: Key classes of the toolkit and their relationship

e Each active node, whether acting as an end-system or router, is represented by an
instance of the class Node. A node extension architecture allows for heterogeneity in
which different nodes support different service components, for example, caching or
transcoding, as appropriate. Extensions are developed by subclassing the abstract?
class Extension.

e Each network interface is represented by an instance of the class Channel. Channels
connect individual active nodes into a complete network. Different types of point-to-
point and shared medium channels can be used as appropriate.

e New applications that make use of the active network are developed by subclassing
the abstract class Application. Applications contain the functionality implemented
by traditional distributed applications and operating systems at end-systems, for ex-
ample, vat, nv, wb, or the combination of HTTP and TCP.

e New services can be developed at any time by subclassing the abstract classes Capsule
and Protocol. The subclasses describe the new types of capsules and their organiza-
tion into protocols, and how they should be forwarded at active nodes in terms of the
APT exported by the class Node. Unlike other code, this code is transferred between
active nodes by the code distribution protocol when the service is used.

Each node is maintained in its own Java virtual machine, typically as a user-level Java
process running under a Unix-based operating system. Application instances are run within
the Java virtual machine of the active node to which they are locally connected. With this
setup, the toolkit can be used to construct small networks based on a physical topology by
running one node per router, and to emulate larger networks based on a virtual topology
by running many nodes per host.

Note that the architecture itself is in no way tied to Java. I chose Java because it was
convenient for rapidly prototyping an evolving design, provided safety and mobility infras-
tructure, and is likely to improve in performance to be more competitive with compiled

2 Abstract classes are those that can only be used via subclasses that complete their implementation.
They are denoted by the keyword abstract in Java.

o8

‘ Method ‘ Description
int getAddress() Get local node address
ChannelObject getChannel() Get receive channel
Extension findExtension(String ext) Locate extended services
long time() Get local time
Object put(Object key, Object val, int age) | Put object in soft-store
Object get(Object key) Get object from soft-store
Object remove(Object key) Remove object from soft-store
void routeForNode(Capsule c, int n) Send capsule towards node
void deliverToApp(Capsule c, int a) Deliver capsule to local application
void log(String msg) Log a debugging message

Table 3.1: Node API exported to capsule forwarding routines

‘ Exception ‘ Description
ResourceLimitException Too few capsule resources for operation
TimeLimitException Forwarding has run too long
NoSuchRouteException No default route for sending
NoSuchApplicationException | No local application for delivery

Table 3.2: Exceptions during capsule forwarding

environments as its runtimes mature. It has facilitated the exploration of the design space
at the cost of higher absolute performance. Higher performance implementations are a
natural step towards deployment once the design and use issues are understood. One such
effort that explores this direction is PAN [Nygren, 1999], and a further approach would be
to execute binary proof-carrying-code within an operating system kernel.

In the remainder of this section, I describe the important features of the key classes in detail.
This is done in a bottom-up fashion, beginning with the node API available to capsules,
then capsule and protocol classes themselves, followed by applications. Finally, extensions
and channels are discussed, along with the supporting conventions and tools that allow
complete active networks to be created and managed.

3.1.1 Node

The Node class represents the runtime of a single network node, including its soft-store and
code distribution system. It exports its services to:

e capsules, to execute their forwarding routines.
e applications, to register protocols and send and receive capsules.

e node extensions, to augment local node services.

These activities are logically separate and have different protection requirements. For exam-
ple, capsule activity must be contained, while extensions benefit from more relaxed access

99

to the node. Only the node API available to capsules is described in this section. Other
APIs that support applications and extensions are described in their respective sections.

The node API exported to capsules is listed in Table 3.1. Capsules can invoke these calls
during the execution of their forwarding routine, which is passed a reference to the local
node. The calls fall into three categories.

Functions such as getAddress() and time() return information about the local active
node environment. The getChannel () method returns the channel from which the capsule
currently being processed was received, or null if the capsule was created locally. The
findExtension() method returns a handle to a named extension that augments the node
API if it is locally installed, or null otherwise. Many similar functions, such as those that
enumerate the local default routing table or examine forwarding statistics, could be added
as they are needed in practice.

The next category of functions manipulate the soft-store, a repository of application-defined
objects that are cached for a short interval and then expired. put() enters an object,
possibly a capsule, into the store after decrementing the resource limit on the capsule
currently being forwarded. get() looks up an object in the store and returns a reference
to it. A third function, remove () purges the store of an object. There is no guarantee
that an object stored during the processing of one capsule will still be retained during the
processing of subsequent capsules. This is because periods of high demand can cause the
node to cycle through its available storage relatively quickly. To simplify programming,
however, objects entered into the store while a capsule is being forwarded are guaranteed
to be retained at least until the forwarding is completed.

In the store, objects are cached under application-defined keys and aged for application-
defined intervals, after which they are evicted from the store if still present. Caching serves
to retain objects that are in regular use to improve performance, while aging guarantees
that stale state will not be retained in the network. The store separates objects by ser-
vice (using the protocol type) so that network programmers do not need to worry about
namespace collisions between services. Within a service, programmers must separate the
state of concurrent sessions by using whatever naming scheme is appropriate. For example,
a multicast service might key routing data by group address.

The remaining functions control the flow of capsule processing and its propagation to other
parts of the network. routeForNode () forwards a copy of a capsule towards a node using
default routes, decrementing the remaining resource limit in the process. Custom routing
services typically express their routes in terms of default routes, since this is a robust way to
navigate the network. deliverToApp() invokes an upcall on a local application to deliver
a capsule; the application must make a copy of the capsule if it needs to be referenced after
the upcall returns. If neither of these functions are called before the forwarding routine
completes, the capsule is discarded. log() signals informational or error messages to the
node. This is currently handled by writing them to the console to facilitate debugging,
though it would be straightforward to extend this processing to generate an ICMP-like
message.

There are also a small number of errors that can occur when calling these methods during
forwarding. When one occurs, an error is delivered as an exception to the capsule forwarding
routine making the call. This allows it a chance to recover. The exceptions are listed in
Table 3.2. If the exception is not fully handled and propagates beyond the forwarding

60

‘ Method ‘ Description
int getSrc() Get source address
int getDst() Get destination address
void setDst(int address) Set destination address
int getResources() Get remaining resources
void prime(Capsule parent) | Transfer resources to fresh capsule
int getPrevious() Get previous active node address
byte[] getCapsuleID() Get capsule type
byte[] getGroupID() Get code group type
byte[] getProtocolID() Get protocol type

Table 3.3: Capsule API

routine, then it is handled as a 1og() call and capsule processing is cleanly terminated.

‘ Method ‘ Description ‘

short getSrcPort() Get source port

void setSrcPort(short port) Set source port

short getDstPort() Get destination port
void setDstPort(short port) Set destination port
ByteArray getData() Get payload

void setData(ByteArray data) Set payload
DataCapsule(short sp, short dp, int da, ByteArray p) | Constructor

Table 3.4: DataCapsule API

3.1.2 Capsule

Subclasses of Capsule are used to control how packets are processed within the network.
The network programmer must write a subclass for each different type of capsule. Objects
of the subclass are then used to represent and manipulate the corresponding type of capsules
as they are forwarded through each active node.

The abstract base Capsule class defines the minimal set of features that all capsules must
possess. Capsule header fields are manipulated with the methods listed in Table 3.3.

The source and destination addresses are manipulated as 32 bit integers, with the class
NodeAddress providing routines to format them in [Pv4-style notation. Only the destina-
tion address can be updated. The source address is set to the address of the address of the
node at which the capsule is injected into the network, and is null for capsules that have
not been sent.

The getResources() method returns the remaining resources available to the capsule.
Resource limits are initialized by an application when a capsule is created and before it
enters the network layer. They are decremented by active nodes before a capsule sends a
copy of itself or another capsule, or places an object in the soft-store. In the case that one
capsule creates another within the network layer, the prime () method is used to initialize

61

‘ Method ‘ Description

void evaluate(Node n) | Perform forwarding

Xdr encode() Encode capsule to representation
Xdr decode() Decode capsule from representation
int length() Length of representation

<default constructor> | Call superclass

byte[] mid() Return capsule type

bytel[l gid() Return code group type

bytel[]l pid() Return protocol type

Table 3.5: Capsule Subclass Framework

the resource limit of the new capsule, consuming a resource unit from the capsule being
forwarded in the process.

The remaining methods return code distribution information. getPrevious() returns
the address of the previous active node encountered by this capsule. getCapsuleID(),
getGroupID() and getProtocolID() return the types corresponding to the capsule, code
group, and protocol, respectively. Types are represented as arrays of bytes, and the class
TypelID provides routines to manipulate them.

As well as the minimal Capsule baseclass, ANTS provides a slightly fuller-featured capsule
class that will often be convenient for network programmers to use directly or to sub-
class. The DataCapsule class provides UDP-like service between applications. It provides
the additional methods listed in Table 3.4. Source and destination applications at nodes
are identified with port addresses, which are analogous to TCP/UDP port numbers. They
are manipulated with the getSrcPort (), setSrcPort (), getDstPort () and setDstPort ()
methods. A payload is carried as an uninterpreted array of bytes. It is manipulated with the
getData() and setData() methods. New capsules of type DataCapsule are constructed by
specifying the payload and source and destination addresses. Within the network, forward-
ing follows default routes until the destination node is reached, at which point the capsule
is delivered to the indicated application.

New subclasses of Capsule written by the service developer must override the capsule
framework methods listed in Table 3.5. The active node runtime depends on these methods
to manipulate all types of capsule.

Forwarding is customized by overriding the evaluate() method. It is invoked at every
node the capsule visits and passed the local node as a parameter in order to access node
services. It can handle errors that arise by catching exceptions, and it must terminate
within the processing time permitted by the active node. While it is running, the active node
guarantees that the concurrent execution of other capsules will not be observed. This might
otherwise occur, for example, through changes in the contents of the soft-store. Besides the
node API, the only methods evaluate () may access are those of other capsule subclasses
in the same code group.

New types of capsule will typically include instance variables that represent the addi-
tional header fields used within the network to implement the new service. The encode(),
decode () and length() methods convert these instance variables to and from an exter-

62

‘ Method ‘ Description

void startProtocolDefn() Begin new protocol

void endProtocolDefn() End current protocol

void startGroupDefn() Begin new code group

void endGroupDefn() End current code group

void addCapsule(String name) Add capsule to current group
void addHelperClass(String name) | Add non-capsule to current group

Table 3.6: Protocol API

nal representation. This is needed to transmit them across the communication channels
that link nodes. encode() initializes a linear representation from a capsule object for
network transmission, decode () reverses the process, and length() indicates the buffer
requirements. Kach method is written in a stereotyped fashion using the Xdr class, which
implements an external data representation library. Unfortunately, the task of writing this
code is error-prone. This is because unless the methods agree exactly in all classes along the
implementation hierarchy the contents of instance variables will be jumbled as the capsule
crosses the network. A better solution for future versions of the toolkit is to generate these
methods automatically at nodes from an annotated class description.

Finally, some standardized constructors and initialization methods are needed. This code
provides no input from the network programmer, but rather is boilerplate that could not
readily be provided otherwise. A default constructor (having no arguments) is needed to
provide a template for decoding, and should simply call the superclass constructor. Static
initializers and related methods should link the capsule with its types, since the fingerprint
process means that they cannot be embedded in the code source directly.

Subclasses of capsule can also provide methods and constructors for the convenience of
applications. Thus code that manipulates capsules falls into two distinct categories: code
that supports forwarding within the network; and code that supports applications. As well
as being logically distinct, these types of code are subject to different requirements. In
particular, code that forwards capsules must be transferred across the network by the code
distribution protocol and restricted in its operation by the node security mechanisms, while
application code runs locally and with application privilege. Unfortunately, the current
implementation forces the programmer to combine these two roles in a single capsule class,
effectively making application code subject to network restrictions. It is not clear how best
to improve the situation, since artificially dividing the code into separate classes would
result in duplication and potential consistency problems. In future versions of the toolkit,
an automated mechanism for producing both types of code from a common code base would
be useful.

3.1.3 Protocol

To define a new service, network programmers must write a protocol class as well as writing
capsule classes. Subclasses of the Protocol class are used to specify the organization of
capsule and other classes into the code groups and protocol structures that are needed
within the network.

63

Method ‘ Description

void attachNode(Node n) Connect to local node

Node getNode() Get connected node

short getPort() Get connected port

int getDefaultResources() Get resource limit

void setDefaultResources(int 1) | Set resource limit

void register (Protocol p) Register protocol

void unregister(Protocol p) Unregister protocol

void send(Capsule c) Send capsule via node with default resources
void send(Capsule c, int 1) Send capsule via node

void receive(Capsule c) Receive capsule from node

Table 3.7: Application API

Each new protocol must provide a default constructor that groups capsules as appropriate.
The methods listed in Table 3.6 are provided for this purpose. The method addCapsule ()
is used to add a given capsule class or base class to the code group that is being defined.
Helper classes, which are not subclasses of Capsule but are needed inside the network to
help to manage application-defined objects in the soft-store, can also be added with the
addHelperClass () method.

3.1.4 Application

Applications are the independent entities that make use of ANTS network services. They
are constructed by subclassing the Application class. This is a container for end-system
processing that provides a small API for connecting to the local node, registering protocols,
injecting capsules into the network and receiving capsules from the network. An application
runs within the same address space as the local node.

The Application class provides access to the network via the methods listed in Table 3.7.
The first set of methods is used to connect to the local node and access the node and
application port addresses, as well as establish the default resource limit that is stamped
on each outgoing capsule.

To use a new service, application code first creates an instance of the corresponding protocol
and registers it with the local node using the register() method. This informs the net-
work of the protocol definition, and allows the local node to obtain the associated capsule
code from the local filesystem to bootstrap the code distribution process. Once complete,
applications can send and receive capsules belonging to the new service. The application
should unregister the protocol when it is finished.

The send () method is used to inject a capsule into the network via the local node, stamping
it with a resource limit and setting the source address in the process. If no resource limit
is specified, an application-controlled default value is used. Once sent, the capsule is the
property of the active node, and should not be referenced by the application again. Inside
the active node, it is forwarded as appropriate by calling its evaluate () method. A capsule
is removed from the network with the receive() method. This method is invoked as
an upcall. It is overridden by the application and called by the node when a capsule is

64

available. Because this method is run with the node thread and is synchronized to prevent
further capsules from being received, it must complete quickly, queuing the capsule for later
processing if necessary. It must also copy the capsule if it will be referenced at a later time,
since the capsule remains the property of the active node after the call completes.

Since this research is focused on the structure of network services rather than the structure
of applications, I have provided only a simple and low-level interface between applications
and the network. In addition to the buffering and control semantics described above, ap-
plications support a single port and application code is run in the same protection domain
as the active node. In future versions of the toolkit, a higher-level interface that includes
multiple ports and buffer decoupling would be convenient for network developers.

3.1.5 Extension

Extensions allow a node administrator to augment the built-in services of a node with
privileged code or large components that are not readily transferred using the code distri-
bution protocol. In ANTS, extensions model the heterogeneity of the network. They are
installed independent of the deployment of a new service, and represent capabilities that
may or may not be present at a given active node. For example, Lehman implemented
a GroupsManager extension to support group communication. Other candidates include
richer schedulers, such as those which would support the IETF notions of Integrated Ser-
vices and Differentiated Services, as well as various compression and transcoding libraries,
such as those used in an active services prototype [Amir et al., 1998].

New extensions are developed by subclassing the Extension class to provide whatever
methods are appropriate. The extension is then installed on a particular active node as
part of local configuration. Since extension code is privileged within the active node, the
developer must take care to separate public methods for use by capsules from other methods.
Because the node implements security mechanisms that restrict capsule behavior, extensions
need to instruct the node to grant capsules access to their capabilities. Two methods on
the node assist extension developers in this task. Both are typically called from extension
code during system initialization.

e attachExtension(Extension e), which informs the node of the given extension.
Capsule forwarding routines are then able to locate the extension with the node
method findExtension() and use its services.

e exportClass(Class cl), which instructs the node to grant capsules access to addi-
tional classes. This allows the API of the new extensions to use helper classes, such
as associated data structures.

3.1.6 Channel

Channels provide an interface to a link layer, allowing individual nodes to be connected into
a network via point-to-point or shared medium technologies. New types of channel, corre-
sponding to new link layers, can be developed by subclassing the abstract class Channel.
The UDPChannel is used to model hosts connected by UDP as a single shared medium
channel. This arrangement provides a flexible means of constructing active networks on

65

Method ‘ Description

int getAddress() Get interface address

int getBandwidth() | Get bandwidth (bps)

int getLatency() Get latency (ms)

int getMTU() Get maximum packet size (bytes)
int getBER() Get bit error rate (reciprocal)

Table 3.8: Channel API

top of the Internet. Small networks can be constructed by running one node per router
and connecting the nodes with UDP channels, since UDP spans hosts across the network.
Larger networks can be emulated by running many nodes per machine and connecting them
with UDP channels, since each host can support many UDP endpoints.

Each type of channel provides the methods listed in Table 3.8 to allow service developers to
explore the local environment. Note that many of these characteristics are not well defined
for virtual channels such as UDP, since they can vary considerably for different capsules,
nor for situations where active nodes are separated by many non-active nodes, since local
channel information may not be indicative of the compound channel between active nodes.
For these reasons, service developers should treat channel characteristics as hints.

3.1.7 Configuration Management

As a practical matter, experimenting with an active network requires that a network topol-
ogy be constructed. ANTS provides tools and conventions to automate this process.

The ConfigurationManager tool can be used to create and initialize the local machine
portion of an active network. It requires a description of the network in the form of a
configuration file, containing one or more lines for each network entity (node, channel,
application, and extension) in a simple textual format. This simplifies management, since
one file can be used to specify the entire topology.

To permit the generic handling of network entities, each of the Node, Channel, Application
and Extension classes is derived from the abstract class Entity. Subclasses must adhere
to a number of conventions. Two key conventions are:

e The setArgs(KeyArgs args) method is called by the ConfigurationManager to al-
low the entity to process command line arguments that are passed from the configu-
ration file.

e The start() method is called by the ConfigurationManager to complete initializa-
tion and allow the entity to commence operation. It will typically create a thread to
manage ongoing processing.

In addition, the Entity class also provides methods that its subclasses can use to signal
informational, warning, and error messages to a common point of collection, filtering and

display.

66

3.2 A Simple Example

To provide a concrete example of the toolkit in use, I describe how it can be used to intro-
duce a path Maximum Transmission Unit (MTU) discovery service. Path MTU discovery
is an important service because packet size is known to have a significant effect on perfor-
mance: if packets are smaller than necessary then performance suffers due to per packet
costs; if packets are larger than the channel frame sizes then performance suffers due to
fragmentation costs [Kent and Mogul, 1987].

In the Internet today, path MTU discovery is performed in an ad hoc manner by triggering
error messages and adapting [McCann et al., 1996, Mogul and Deering, 1990]. In an active
network, path MTU discovery can be performed by supplementing this mechanism with
a service that queries the attributes of network paths directly. This requires only that a
new kind of capsule and protocol be defined, and then an application can make use of the
service at any time. The source code for these classes (taken from the ANTS distribution
and reformatted for presentation) is presented below.

3.2.1 PMTUCapsule Class

The purpose of the PMTUCapsule class is to define a new kind of capsule that records the
smallest MTU encountered so far (representing the current path MTU) as it travels through
the network. This information can then be passed to a remote application and conveyed
back to the sender via an appropriate channel, for example, the acknowledgment stream in
the case of a TCP connection. Since the path MTU discovery capsule will determine the
path characteristics only where it encounters active nodes, the resulting path MTU should
be treated as an estimate. This does not complicate the use of the information because
the dynamic nature of Internet paths means that path MTUs must always be treated as
an estimate for the current path. To the extent that active nodes are likely to be found
in the lower bandwidth region of the network and these regions typically have smaller
MTU restrictions, the estimate is likely to be useful. Some techniques, such as checking
the outgoing interface MTU as well as the incoming one, can improve the quality of the
estimate, but are omitted from this example for simplicity.

The source code for this class is shown in Figure 3-2. It extends the class DataCapsule in
order to inherit the behavior of capsules carrying a data payload. The bulk of the additional
functionality is captured in the evaluate () method. This method is invoked at every active
node the capsule passes through, and is passed the local node object as its single parameter
in order to access local services. The method updates the current path MTU estimate by
comparing it against the MTU of the incoming interface. The estimate is carried with the
capsule and accessed by the instance variable pmtu, by comparing it against the MTU of
the incoming interface. The logic of this comparison is slightly complicated by the need to
handle the case in which the capsule has not yet been sent across a channel.

Because this capsule class includes an additional header field that is carried with it across
the network, as is typical of new capsule types, the encode(), decode(), and length()
methods are overridden. They include the pmtu field in the encoding and decoding process.

Most of the remaining code is boilerplate. A default constructor is required for the system
to manipulate this type of packet. The static fields are used to initialize the capsule, code

67

package apps;
import ants.*;

public class PMTUCapsule extends DataCapsule {
final private static byte[] MID = findMID("apps.PMTUCapsule");
protected byte[] mid() { return MID; }

final private static byte[] GID = findGID("apps.PMTUCapsule");
protected byte[] gid() { return GID; }

final private static byte[] PID = findPID("apps.PMTUCapsule");
protected byte[] pid() { return PID; }

public int pmtu = 64%1024-1; // begin with the largest possible datagram size
public int length() { return super.length() + Xdr.INT; }

public Xdr encode() {
Xdr xdr = super.encode();
xdr .PUT (pmtu) ;
return xdr;

3

public Xdr decode() {
Xdr xdr = super.decode();
pmtu = xdr.INTQ;
return xdr;

}
public boolean evaluate(Node n) {

// check the incoming channel and perhaps reduce our estimate
ChannelObject in = getChannel();
if (in !'= null) {
int last = in.getMTUQ);
if (pmtu > last) pmtu = last;
3

// and continue towards the destination
if (n.getAddress() != getDst()) {
return n.routeForNode(this, getDst());
} else {
return n.deliverToApp(this, getDstPort());
}
}

public PMTUCapsule() { }

public PMTUCapsule(short dpt, short spt, int da, ByteArray p) { super(dpt, spt, da, p); }
}

Figure 3-2: Source code for the class PMTUCapsule

68

package apps;
import ants.*;

public class PMTUProtocol extends Protocol {

public PMTUProtocol() throws Exception {
startProtocolDefn() ;

startGroupDefn() ;
addCapsule("apps.PMTUCapsule") ;
endGroupDefn() ;

endProtocolDefn() ;

Figure 3-3: Source code for the class PMTUProtocol

group and protocol types with their fingerprint-based identifiers when the code is loaded
within the network.

3.2.2 PMTUProtocol Class

The purpose of a protocol class is to organize capsule classes into code groups so that they
can be manipulated by applications and nodes within the network. In the case of the path
MTU discovery service, this is straightforward because there is a single capsule class. This
class is wrapped in a single code group that forms the entire protocol, as shown in Figure
3-3.

3.2.3 PMTUApplication Class

An application running on an active node can use the path MTU discovery service at any
time. This is accomplished in three steps:

e Obtain the code that implements the PMTUCapsule and PMTUProtocol classes from a
directory service.

e Create an instance of PMTUProtocol and register it with the local active node, causing
the service code to be loaded into the local node.

e The application is then free to create capsules that are instances of the class PMTUCapsule,
and send them into the network where they will receive the path MTU service.

The source code for a simple application that does this is shown in Figure 3-4. It is shown
for completeness, though it consists mainly of Java GUI code to send a capsule in response
to a button click, and to display the path MTU when a capsule is received. In a real
application, path MTU information would also have to be propagated from the receiver
back to the sender.

69

package apps;
import ants.*;
import utils.*;
import java.awt.x;

public class PMTUApplication extends Application {
final public static String[] defaults = {};
int target;
Button send;
Label receive;

synchronized public void receive(Capsule cap) {
super.receive(cap) ;
if (cap instanceof PMTUCapsule) {
PMTUCapsule pcap = (PMTUCapsule)cap;
receive.setText ("PMTU is "+ pcap.pmtu +" bytes");
}
}

public boolean handleEvent (Event evt) {
if (evt.id == Event.ACTION_EVENT && evt.target == send) {
send (new PMTUCapsule(port, port, target, null));
return true;
} else
return super.handleEvent (evt);

public void setArgs(KeyArgs k) throws Exception {
k.merge(defaults) ;
for (int i = 0; i < k.length(); i++) {
if (k.key(i).equals("-target")) {
target = NodeAddress.fromString(k.arg(i));
k.strike(i);
}
}
super.setArgs (k) ;
}

public void start() throws Exception {
getNode () .register(new PMTUProtocol());
setLayout (new BorderLayout());
resize (400, 200);
send = new Button("Send PMTU to "+ NodeAddress.toString(target));
add("South", send);
receive = new Label("", Label.CENTER);
add("Center", receive);
pack();
show () ;

public PMTUApplication() throws Exception { super(); }

Figure 3-4: Source code for the class PMTUApplication

70

3.3 Major Implementation Components

In this section, I switch gears and describe the underlying implementation. Recall that
the toolkit is written entirely in Java, without native methods and using only the standard
Java libraries. Each node is run in a single Java virtual machine along with its locally
connected applications. Nodes communicate with each other between virtual machines
using the communication services provided by Java.

Rather than divide the discussion along class lines, I have grouped it by the major tasks
that arose in the implementation, with the expectation that this is likely to provide the
most insight into how to construct an active node. I further focus on the design issues that
were not obvious (such as the node security mechanisms) and omit the remainder (such as
the external data representation library).

channel s active node . applications

(-
IS S N

v

UL+

operating java runtinme
system

A
y

Figure 3-5: Control structure and buffering in the active node

3.3.1 Control Structure

A control structure knits the key classes together into a running active node that forwards
capsules. Its design must accept packets from multiple channels and applications, forward
them without allowing concurrent activity to expose intermediate states, and deliver packets
to multiple channels and applications. It should accomplish this without starving any
channel or application, and with a minimum of overhead. The design is further constrained
to be that of a software-based implementation running on workstation or PC hardware.

Given that capsule processing routines are analogous to IP processing (in that they are
intended to run to completion at the forwarding rate) a simple approach is to model the
ANTS design on that of a Unix-based router. The relevant features of this design are that:
buffering is used to decouple rates between channels and the node, and between the node
and applications; and scheduling is trivially performed once per packet.

In the ANTS toolkit, this scheme is approximated in a lightweight fashion as shown in Figure
3-5. Since the underlying operating system provides buffering to match network and host
processing rates, no additional buffering is provided as part of channels within the Java
runtime. This reduces the complexity of the implementation considerably, at the cost of

71

the inability to tune buffer sizes and observe queue overflow locally. This tradeoff seems
reasonable for a prototype, though in the longer term the ability to observe congestion
related losses will be valuable for innovative protocols.

Since this research is focused on the structure of the active node rather than that of ap-
plications, applications are provided with a low-level interface in which buffering is their
responsibility. Packets are delivered to the application with the node thread (that is, as
an upcall) and sent by stealing the application thread. This design requires that the node
trust its applications but does allow for efficient operation. Normally, buffering and a con-
trol handoff would be used to cross this boundary. Instead, an upcall allows the application
to avoid a control handoff if the receive processing completes quickly. Similarly, the copying
of capsules can be avoided by the application if it is known that the service being used is
compatible with “move” semantics.

To schedule packets, a separate thread is run per channel and per application, with capsule
processing serialized by synchronizing it on the node?. To reduce overhead, this is done
once per capsule, rather than once per node API call. The channel threads loop forever
receiving and then forwarding packets, blocking when no input is available. Thus it is code
in the channel thread that receives packets, evaluates them in the context of the node,
and handles any errors that arise. In our prototype, errors simply cause capsule processing
to be terminated, though it would be straightforward to extend this to an error message
scheme analogous to ICMP. The application threads are under the control of the application
programmer, and interact with the node only when they are used to send a packet.

src dst resources

buffer payl oad Capsul e obj ect

DO—

protected buffer views

recei ve/transm-t
buffer

Figure 3-6: Collapsed receive, Capsule and transmit representations

3.3.2 Data Paths

Experience with network protocol implementations provides evidence that the organization
of the data paths is important in order to achieve high throughput. Copying across protec-
tion boundaries is generally an expensive operation. In Java, allocation is also potentially

8In Unix, the system call setsockopt() allows control of buffer size, and non-blocking output allows
output queue overflow to be observed. These features are not available in JDK1.1.

“An obvious alternative is to poll for input. This is not readily supported in Java because there is no
notion of non-blocking input.

72

expensive because it requires that object memory be initialized (by zeroing) and may invoke
the garbage collector.

In the case of the active node, the data paths receive capsules from channels and applications
and process them within the node. There they can be sent out on other channels, delivered
to applications, entered into the soft-store, as well as any combination of these operations,
including multicasting. The design of the data path is more complicated than a typical
network implementation, for example, TCP /IP within a BSD-based kernel, for two reasons:

e Capsules are manipulated as objects within the node, rather than as linear buffers.
Some copying may be required to convert between these forms, depending on the
underlying representation of Java objects and in the case that fields change size, as
is typically the case when the payload is substituted. Further, different parts of the
capsule are subject to different protection requirements. The evaluate () routine, for
example, must not be able to change the value of the resource field, but the node must
be able to decrement this field as resources are consumed.

e Different types of packet are represented with different types of capsule. This makes
cheap allocation schemes more complex. Further, allocation ultimately depends on
the capsule forwarding routines themselves. For example, one program may wish to
preserve a copy of the capsule in the soft-store as well as forward it, while another
may not. Because these effects are not known ahead of time, static allocation schemes
are made more complex.

The ANTS data path design uses two strategies to minimize memory copying and allocation.

To remove unnecessary copying, the receive, object and transmit representations of capsules
are largely combined into a single overlapping data structure. An example is shown in Figure
3-6. The Capsule object is kept relatively small by referencing, rather than including by
value, large fields such as the payload. A special class, ByteArray, is used to express
these references by exposing only a portion of the receive buffer used to decode the capsule
and protecting the remainder®. The same buffer is later used to encode the capsule for
transmission. Transmit buffer copying is minimized because only the changes caused by
processing need to be copied from Capsule object back to the buffer. In the common case
that the payload is at the same buffer position and has not been modified it need not be
copied.

To remove unnecessary allocations, the design is specialized for two common cases: a packet
being received from a channel and sent one or more times to another channel or application,
but without being copied into the soft-store; and a packet being sent once by an application,
again without being copied into the soft-store. These cases allow allocation and initialization
of large buffers to be avoided by reusing one buffer for multiple capsules. In the first case, the
receive buffer can be used to transmit the capsule and then to receive subsequent capsules
because no copies of the previous packet are kept. In the second case, a single transmit
buffer can be used, again because no copies are kept.

Besides the buffer objects, capsule objects must also be allocated and initialized. To balance
efficiency and complexity, these remaining capsule objects are managed per packet in a

SUnfortunately, without runtime modification, this requires a set of array bounds checks in addition to
those that Java already performs.

73

straightforward manner. As one strategy to reduce the number of objects that need to be
allocated per capsule, primitive types are used for header fields where possible. For example,
resource limits and node and port addresses are manipulated as integers, with utility classes
such as NodeAddress providing methods to manipulate them as a special datatype®.

3.3.3 Soft-Store

The design of the soft-store consists of an object-based API and an allocation mechanism
that combines usage patterns and aging. (A protocol-based protection mechanism is also
implemented in the soft-store, but described later as part of the node security design.)

One difficulty was to implement the combined allocation mechanism efficiently. This was
done by aging information in seconds, at a much coarser granularity than the packet rate.
Given this, aging can proceed as a background process that sweeps the soft-store, and so
ensures that stale information is removed eventually, while caching policies can be enforced
at the packet rate, and so ensure that fresh storage is available immediately when it is
needed. In the current implementation, the caching policy is least-recently-used across the
information stored by all protocols.

In order to support a high-level view of network programming, the soft-store is designed
around an interface that manipulates generic objects. Java encourages this style of pro-
gramming with safe dynamic casts and the use of generic objects in its standard libraries.
This generality makes the soft-store powerful for the network programmer. For example,
lists of capsules can be stored as easily as routing information. By the same token, it com-
plicates node resource management in three respects that are only partly addressed by the
design.

e The soft-store interacts with the design of the data paths because buffers cannot be
reused while the corresponding capsule is held in the store. However, it is difficult to
efficiently discern whether a buffer has entered the soft-store via a graph of objects.
The conservative strategy used in ANTS is that capsule buffers are not reused if an
object whose type is not explicitly known to permit buffer reuse is entered into the
soft-store.

e The store is managed by the number of objects, irrespective of their size. This is a
consequence of the lack of Java facilities for determining the size of an object.

e Object are evicted in a straightforward manner by removing the object reference from
the store. However, this will not free actual memory until other references to the
object via the soft-store have been removed and the garbage collector runs. Again,
without runtime support this is difficult to remedy.

The net result of these complications is that the soft-store has only approximate control of
the underlying memory pool, a defect that could be exploited to attack the node. However,
I have deferred refining the soft-store to address these complications until there is greater
experience with network programming. On the one hand, it is clear that with runtime
support for object sizes and a restricted API (such as one that uses a fixed set of concrete

6 Arguably, exposing the implementation in this fashion is a mistake. But the performance implications
and lack of an alternative, such as typedef, make the choice difficult.

74

types that do not contain references) all of these issues can be addressed. On the other
hand, a more flexible API may prove useful, in which case strategies for supporting it safely
should be explored. For example, API modifications that limit or expose references or
specify what should happen when one object of a graph is evicted may be able to combine
flexibility with safety.

3.3.4 Code Distribution

The implementation of the code distribution system is comprised of a demand loading
protocol, a code cache, and a secure dynamic loading system. I describe each in turn.

To provide as modular an implementation as possible, the demand loading protocol (class
DLProtocol) is modeled after a regularly loaded protocol. It is unusual in three respects
that relate to its function:

e To trigger the protocol in response to unrecognized packets, the channel is modified to
intercept such packets and encapsulate them within special demand loading capsules.
These capsules (of class DLBootstrapCapsule) are then passed to the node as regular
capsules and result in a demand loading exchange. In this manner, the channel re-
ception and decoding process always appears to succeed to the node, with the result
that the demand loading knowledge is localized.

e Because code distribution is used to bootstrap the customization process, the demand
loading capsule types must be universally known. In theory, the fingerprint process
provides such an identifier. In practice, the process is tied too heavily to the source
code (which depends on that of the node) and compilation process (which can produce
slightly differing bytecode on different runs). This conflict is resolved with the notion
of built-in protocols (class BuiltinProtocol) that are never loaded across the network
and whose types are constructed from hard-wired version strings.

e The implementation is privileged in ways that regular protocols are not. First, the
protocol interacts directly with internal node state to manage the code cache. Second,
the protocol is permitted to manufacture new resources within the network layer as
they are needed to carry out the demand loading exchange. Third, when the missing
code is loaded, the associated capsules are run recursively, from within the running of
the demand loading protocol. Calling across protocols is not otherwise allowed, since
it poses security hazards. In all three cases, package level protection in Java is used
to grant restricted access.

The code cache structure itself is fairly straightforward. It is separated from the soft-store,
and specialized to store and lookup capsule, code group and protocol information. The
contents of the cache are managed in a least-recently-used fashion.

Finally, a secure dynamic loading system handles the loading and linking of new protocol
code, interpreting calls from capsule code to other classes to restrict their reach. Calls
against the node API or to permitted utility classes (for example, java.util.Vector)
are unambiguous and are allowed. A more subtle issue is that of supporting calls between
capsule code. These occur when one type of capsule creates another type within the network.
These calls are expressed in the bytecode with local names (the Java class names from the
originating host) rather than global names (the capsule types). To interpret local names

75

correctly and not permit unintended access, linkage between loaded code is confined to a
single protocol. This scheme is implemented (class DLClassLoader) by customizing the
class loading abilities of Java.

3.3.5 Default Routing

The current implementation of default routing forwards capsules along shortest path routes.
These routes are generated by a distributed process that provides essentially the functional-
ity of the original Routing Information Protocol (RIP) [Hedrick, 1988] used in the Internet.
That is, update messages are exchanged between neighboring nodes to support a distance
vector calculation. These messages are sent periodically and when triggered by changes in
routes. The distance vector calculation includes heuristics (split horizon processing with
poison reverse) that increase the rate of convergence of the calculation and its stability.

The route maintenance is modeled in the node as one protocol, class RouteProtocol, that
is built-in in the same sense as demand loading. It relies on privileged access to manipulate
routing information that is then used by the node, as well as to run a thread that periodically
exchanges route update capsules with neighboring nodes.

The implementation itself is unremarkable. Of greater interest is a design issue that was
raised in the process: should default routing be part of the infrastructure, or provided as
an introduced service? All other things being equal, an introduced service would highlight
the value of the architecture. Despite this preference, I opted to build default routing into
the infrastructure as for three reasons:

e Default routing will often be used by applications that simply wish to exchange data
without customized processing. As such it should be both efficient and convenient to
use. A built-in service can be exposed directly as part of the node API to achieve
these goals.

e Default routing will often be used as the basis for constructing special-purpose routes.
As such, it is essentially a bootstrapping service that must always be available. An
introduced service that relies on information in the soft-store may not always be able
to provide reasonable routing information. Conversely, with a built-in default routing
service, introduced services that construct their own routes can fall back to default
routes if their routes are temporarily unavailable.

e Given that alternative routing services are a potential use of an active network, the
best means of expressing them is not a priori obvious. What is clear is that a straight-
forward translation of traditional routing protocols, either distance vector protocols
such as RIP or link state protocols such as OSPF, will not work. This is because
such protocols rely on features such as timers, or assumptions such as that all nodes
support the protocol, that ANTS does not provide or make, respectively.

3.3.6 Node Security
Code that runs within the active node falls into different protection domains: one for the

active node runtime, and one for each loaded protocol. Calls between these domains must
be restricted, and the resource usage of individual domains must be limited.

76

To accomplish these goals without sacrificing performance, the features of Java are used to
implement multiple protection domains within a single virtual machine, to the extent that
this is possible. In general, a combination of mechanisms is used to restrict capsule activity,
while the active node runtime is not limited in any way.

As described for code distribution, calls between capsule code and other protocols or the
active node runtime are restricted at link-time by using the ClassLoader infrastructure.
This strategy is supplemented in two ways. First, a dynamic checking mechanism is used
at a finer granularity for those classes that must be accessible to capsules but also contain
sensitive methods that should not be called by capsules. For example, capsules can call node
API methods, but not the node constructor. To intercept calls that are not permitted, the
stack inspection mechanisms of Java are used to verify that the call has passed through a
mediating class, such as a trusted extension, rather than come directly from capsule code.
This is similar to the privilege mechanism being introduced as part of the JDK1.2 security
architecture [Gong et al., 1997, Gong and Schemers, 1998]. Second, capsule fields that
cannot be manipulated directly by forwarding routines are protected with methods. For
example, the source address is private and manipulated with an accessor. Raw access to
the capsule buffer itself is restricted with protected buffer ranges, which were described as
part of the data path design.

The resources consumed during capsule processing are limited in two ways. Accidental
long-running computations are broken with a coarse watchdog timer. Protection at a finer
granularity is advisable, but requires loadtime or runtime modifications. Node storage is
tracked by using a context record that is maintained by the node while the forwarding
routine is running. This prevents capsules from lying about the protocol to which they
belong. It is used by the appropriate node API calls to locate and decrement the capsule
resource limit field, and to partition the contents of the soft-store. Other memory resources,
such as stack and heap space, are not protected in the prototype.

Finally, in addition to these mechanisms the integrity of the node runtime is based on the
assumption that bytecode is well-formed in a number of ways beyond what is required for
type safety. These properties could be checked at load-time during the bytecode verification
phase, but this cannot easily be accomplished without modifying the Java runtime.

e Until they are generated by the node itself, the encode, decode, and length methods
must be well-formed to ensure that they will not tamper with the runtime or cause
capsule invariants to be violated. In particular, they must correspond to each other
exactly, begin with a call to the superclass method, and call no other methods except
those in the Xdr library.

e Some boilerplate is needed so that capsules can be manipulated by the active node.
The type of the capsule must be statically initialized to the correct value and not
written subsequently. The default constructor must consist of a single call to the
superclass constructor that passes the type of the capsule.

e Various exceptions are used by the node in response to error conditions to signal the
capsule code that it must terminate, for example, when the capsule code has been
running too long or attempts to access a class for which it lacks permission. These
indications can be used as an opportunity to leave data structures in a consistent

77

state, but must not be blocked”.

3.4 Aspects Not Addressed

In the current version of the ANTS toolkit, no attempt was made to implement several
aspects of the architecture since their omission seems unlikely to affect its evaluation. This
section documents those aspects, how their implementation might be handled in future
releases, and how their absence impacts the usefulness of the toolkit.

3.4.1 Non-Active Nodes

The ANTS architecture models the network as a graph of active and non-active nodes in
which the customized forwarding routines are run only at active nodes. Since the focus
of this research is on the active nodes and the non-active ones are essentially transparent
because they perform default TP forwarding, the toolkit does not implement them. In a
future version of the toolkit, it would be possible to reuse existing IP routers as non-active
nodes by combining the IP packet and capsule formats as described in Chapter 2. In the
meantime, to be faithful to the architecture, network programmers must be careful to ensure
that the customized forwarding routines do not rely on a fully-active network by failing to
maintain a valid destination address at all times.

3.4.2 Node Security Policy

The ANTS architecture relies on a security policy to ensure that overall network resources
are consumed in a reasonable manner. Service code is typically accepted for execution if it
has been certified (by using a digital signature) by a trusted authority. Services that are
not accepted receive default forwarding. In effect, the node is not active for them.

The toolkit, on the other hand, does not implement this kind of security policy. It can be
modeled as having a null security policy that accepts all new services. In the same manner
as non-active nodes, this decision does not affect the evaluation in terms of the kinds of new
services that can be expressed. In practice, services that are not accepted may generate an
overhead at otherwise active nodes, as demultiplexing based on their capsule types must be
performed before their service is mapped to default IP forwarding.

3.4.3 Code Representation

Since the assumption of small service descriptions underlies the design of the code distribu-
tion protocol, compact code representations are important. The code distribution protocol
transfers forwarding routines as the Java classfiles of the corresponding capsule subclasses.
While bytecode representations are typically compact, the resulting transfer format is larger
than necessary for several reasons:

"Java provides no sure way for one thread to control another. Signals are delivered to a running thread
as exceptions and so can be caught.

78

e [t is not compressed but amenable to compression. The use of gzip, for example,
reduced code group size by at least 50% for the services presented in Chapter 4.
A supplementary dictionary may lead to further gains because there is significant
repetition between capsule classes, as they all have at least one set of interface classes
and methods in common: the node API.

e [t contains code that could be generated automatically at each node. Boilerplate
such as default constructors can be generated with no extra information beyond that
already in the classfile, while encoding and decoding methods need only knowledge of
the new header fields. Removing this code reduced code group size by at least 30%
for the example services.

e It can contain code that is not needed within the network, such as convenience con-
structors for use by applications. This is a consequence of the design of the toolkit.
The amount of this code depends on the service developer, but was typically less than
10% for the example services.

Code size has not proven to be an issue in experiments with the toolkit to date. However,
services that are developed in a production active network may be more complicated, and
consequently larger. If and when size becomes an issue, the preceding observations can be
used to obtain a more compact encoding in exchange for additional code processing.

3.4.4 Granularity of Capsule Processing

In the ANTS architecture, forwarding decisions are expressed in terms of customized pro-
cessing routines. While these routines must capture all of the forwarding decisions that can
affect the handling of a particular capsule, many forwarding decisions do not need to be
recomputed for each capsule since they vary at a much coarser granularity. Forwarding de-
cisions that vary with the capabilities of the local active node (such as the size of the cache
or available computation) effectively need to be made only once, the first time the code is
run at a particular node, since they will not vary afterwards. Other forwarding decisions
will vary more often, but still infrequently compared with the packet rate. For example,
when the forwarding of one type of capsule depends on information that is maintained in
the soft-store by another type of capsule and changes only slowly (such as a custom route
that is refreshed every 30 seconds), repeated soft-store lookups are wasteful.

In the current implementation, essentially all decisions are recomputed each time that a
capsule is forwarded. As a special case, the outcome of the search for node extension
components is saved as a static field. This design seems appropriate for a prototype. It
provides a straightforward programming interface with which to explore the structure of new
services. It effects the evaluation of the architecture only in that the local node performance
will be underestimated.

In future versions of the toolkit, a more promising approach may be to use a dynamic
binding mechanism based on events, for example, similar to the one used in [Pardyak and
Bershad, 1996]. This would allow changes that occur as less than the capsule forwarding
rate, for example, the presence of node extensions or information in the soft-store, to control
which version of the forwarding method is invoked for a given type. The implementation
may be efficient, since it overloads the existing demultiplexing stage to capture the dis-

79

patch decisions that now tend to occur within the evaluate () method. Unfortunately this
approach was not straightforward to use with Java, since it lacks methods as first class
objects8.

Optimizing two special cases should also be worthwhile. First, switching between cus-
tomized and default forwarding at a node is likely to be a common case. Built-in support
may allow a capsule to receive default forwarding more efficiently, by omitting protection
mechanisms that would otherwise be necessary. Second, many routines may simply forward
capsules unless they are at the node given by the destination address (which of course can
change en route). If capsules of this kind can be readily discerned, for example, from a
bit in the type field, then they too can be handled with an efficient default forwarding
mechanism when appropriate. This is reminiscent of the distinction between Hop-by-Hop
and Destination options in IPv6 [Deering and Hinden, 1995].

3.5 Experience With Java

As a high level language that supports mobile code and emphasizes security, Java has
supported the rapid prototyping and exploration of the design space of an active node. I
close this chapter by describing how well or poorly aspects of Java have met the needs of
the ANTS toolkit.

At the time of design, and still as of the time of writing, Java is arguably the language that
most closely matches the combined mobility, security and efficiency needs of an active node.
It allows compiled representations (carried as bytecodes) that originate from an untrusted
party to be safely yet efficiently executed within the context of a trusted virtual machine.
The key innovative feature of Java in this respect is bytecode verification. It enables a rapid
load-time analysis to guarantee properties such as type-safety and lack of stack underflow or
overflow. Together, these properties allow a much more efficient execution of the bytecodes
than guarded interpretation, since many runtime checks can be omitted. Complementary
infrastructure (particularly a controlled linking process, stack introspection, and checks
build into the system libraries) allow the scope of untrusted code to be further restricted.
As an added bonus, the availability of high-level language features such as automatic storage
management and exceptions has allowed a simple yet powerful programming interface to be
provided.

Conversely, without Java the simultaneous investigation of performance and security issues
would have been greatly complicated. Binary code representations offer greater runtime
efficiency, but are not yet compatible with security goals. Proof-carrying code, for example,
is a promising technology, but is not mature enough to be of use. Software-based fault
isolation is a more mature technology, but offers a form of safety that is less well-suited to
frequent protection domain crossings than type-safety. The design of PAN [Nygren, 1999],
a binary-based active node that investigates performance but sacrifices security, illustrates
this tension. At the other extreme, an implementation based on interpretation would have
met security but not performance goals. It would have been too far removed from the long

8Subsequent to the current implementation, JDK1.1 emerged, complete with a reflection package in
which methods can be manipulated as first class objects. This facilitates the described approach, yet incurs
a performance penalty that may negate its advantages.

80

terms goal of introducing services whose performance is comparable to that of native code
to argue the performance implications with any conviction.

These advantages have come along with several disadvantages. The level of node perfor-
mance has been relatively poor due to the design of existing runtimes and their operational
constraints, especially the limited mixing of untrusted mobile with trusted stationary code,
and lack of kernel-based runtimes. This situation is temporary and will change as new
runtimes and improved just-in-time compilers emerge. More interesting are disadvantages
that stem from the design of the existing Java virtual machine and its standard libraries.

Some performance overheads are the indirect result of language features that are not nec-
essary for the active node. For example, Java emphasizes a programming style based on
multiple threads and synchronization between them. Instead, a simpler polling and event-
driven style would have been sufficient for the design and reduced runtime overhead. While
Java does not require that multi-threading features be used, their availability has influenced
the design of standard libraries and runtime such that their costs cannot readily be avoided.
For example, there are no non-blocking network interfaces, which precludes a polling-style
design in favor of multi-threaded one. Similarly, the object-oriented emphasis tends to re-
sult in more expensive implementations than would otherwise be needed because it is often
promoted to the exclusion of other forms of abstraction. For example, the reuse of primitive
types (such as integers for addresses) requires an object wrapper rather than a more efficient
aliasing (such as typedef in C).

There is also a mismatch between the capabilities offered by Java and those required for
systems programming. The layer of abstraction that Java imposes for portability makes
it difficult to control memory and processing resources at a fine granularity. For example,
object size and structure cannot readily be discovered, processing can be interrupted by
garbage collection, and the lack of first class methods makes it difficult to efficiently re-
arrange bindings between events and code. There is also no easy way for trusted code to
circumvent type safety mechanisms in situations where they result in unnecessary overhead.
Conversions between different representations that can be accomplished with a cast in C
requires object allocation, initialization and copying in Java. Other systems projects have
extended high-level languages with comparable facilities, for example, SPIN introduced the
view construct into Modula-3 [Hsieh et al., 1996]. Another useful mechanism would be
runtime support for array subsetting, which would enable regions of a buffer to be pro-
tected efficiently. These mismatches do not indicate tasks that cannot be accomplished in
Java, but rather tasks that are not well supported. For example, introspection methods in
JDKI1.1 can be used to support first class methods, but the cost is high. Similarly, object
size can be inferred by introspection, but again the cost is too high for this method to be
used in practice.

Finally, while Java has directly contributed to security goals, it has fallen short of the ability
to support multiple protection domains in a single virtual machine. It is difficult to separate
effects in one protection domain from those in another since stack and heap memory pools
are shared across all domains. Similarly, it is difficult for one domain to exert control over
another, since there are no signaling mechanisms (such as thread methods or exceptions)
that cannot be subverted. These difficulties are the focus of other research projects; see
for example [Hawblitzel et al., 1998]. An interesting approach not suggested elsewhere is
to achieve security goals through an extensible bytecode verification process. For example,
untrusted code could be examined at load-time to ensure that it does not catch various

81

thread exceptions and so can be controlled by another thread without runtime overhead.

82

Chapter 4

Introducing Network Services

To demonstrate how the ANTS architecture can be used to introduce new services, this
chapter describes two case studies: multicast and Web caching.

The case studies are complementary. Multicast represents a widely-accepted change in
network service that has a relatively long history. Studying multicast thus looks backwards
to shed light on whether the architecture can introduce the kind of services that have proven
valuable. On the other hand, Web caching represents the impact that changing application
patterns are having on the network today. The best way to incorporate caching into the
network infrastructure is the subject of much ongoing research (and debate). Studying Web
caching thus looks forward to shed light on whether the architecture is able to address the
kinds of new network service that are required today.

Both services are discussed at some length, since they are intended to be realistic service
candidates, rather than toy examples. I do not present new solutions to these particular
problems. The goal of each study is to demonstrate how the active network approach can
be applied. That is, I wish to show that ANTS facilitates the construction and deployment of
new services, not that multicasting and Web caching should be tackled in a novel manner.
Before presenting the two cases, I discuss network programming issues with an eye towards
understanding how services should (and should not!) be written.

4.1 Programming with Capsules

Protocol design is a complex task. Processing that occurs within the network must provide
good performance in the common case that packets are delivered in sequence and via the
same route. The same processing must be compatible with correct application behavior
in the cases that: packets are lost, corrupted, reordered or duplicated; nodes or links fail;
and network routes vary. Paxon provides more information on the type and frequency of
end-to-end packet dynamics that must be accommodated [Paxon, 1997].

By itself, an active network does not necessarily make the task of protocol design any easier.
The freedom that the capsule model allows is useful for experimentation, but provides scant
guidance to network programmers. It would be straightforward, for example, to construct

83

services that rely on fixed topologies, or that only function correctly when the network is
reliable.

The following guidelines have proven valuable for constructing modular, robust and efficient
services. They are essentially the result of well-known protocol design principles applied to
the capsule programming model. Adhering to them eliminates known design failures, and
the principles can be seen at work in other protocols that employ additional processing at
nodes within the network, for example, Snoop TCP [Balakrishnan et al., 1996] and RSVP
[Braden et al., 1997).

4.1.1 Network State is Soft-State

Many new services will maintain state at nodes internal to the network, for example, custom
routing data. This state should be treated as soft-state [Clark, 1988], since it can be lost due
to partial failures and this should not result in permanent service disruption. To optimize
performance, service designers should assume that in the common case information placed
in the soft-store will remain there until the coarse grain aging clock associated with the
information fires. For the purpose of correctness, however, service designers should assume
that the soft-store provides no guarantee that information deposited by one capsule will be
accessible by a subsequent capsule, and that if information is lost no indication of failure
will be provided. This is because, aside from partial failures, periods of excessive storage
demand may cause the node to cycle through the available storage relatively quickly.

A side-effect of this guideline is to avoid high-level conflicts between network-resident pro-
cessing and the end-to-end argument [Saltzer et al., 1984]. The latter makes the case that
functions integral to the correctness of an application must be implemented on an end-
system to end-system basis; they can additionally be implemented within the network as a
performance optimization. Treating capsule data as soft-state causes network-resident pro-
cessing to fall into this optimization category. Applications must be prepared to regenerate
such data, for example, with periodic refresh messages, or forego the subsequent processing.

A further aspect of soft-state is naming. The soft-store also separates state based on proto-
cols. This means that service designers need not worry about namespace collisions between
the state of different services. At a finer granularity, however, the service developer is re-
sponsible for separating the state of concurrent sessions by using whatever form of identifier
is appropriate. For example, at any given instant, a multicast service might support a
number of groups, each of which is an independent session that should not share state with
other sessions. This can be accomplished by using the multicast address as a prefix key for
soft-store operations. On the other hand, by its nature a Web caching service should be
designed to share state between requests.

4.1.2 ALF Techniques Reduce Complexity

One view of the process of designing a service is that some fraction of the processing that
would otherwise take place at the application endpoints is moved into the network. To
facilitate this structuring, capsule data carried between nodes should be decomposed into
units that can be manipulated independently by application code.

84

This principle, known as Application Level Framing (ALF) [Clark and Tennenhouse, 1990,
is applied to achieve efficient performance at end-systems by preserving data boundaries
meaningful to the application in the lower-level framing. Effectively, the semantics of the
application must be taken into account in the design of its network protocols so that the
roles of application and network are matched and the resulting processing is efficient.

The same arguments apply to the processing of application data at intermediate nodes.
Here, there is an even greater need to process packets independently and possibly out of
order since they cannot reasonably be reassembled on a hop-by-hop basis. By extension of
this reasoning, a useful strategy is to make processing at intermediate nodes idempotent,
so that duplication does not introduce error.

4.1.3 Design for Asymmetric and Dynamic Paths

Network paths should be modeled as both asymmetric and dynamic so that services do not
fail when these situations arise.

A route is asymmetric when the path from destination back to source is not the reverse
of the path from source to destination. Asymmetric routes are now common because of
“early-exit” routing policies. To accommodate them, service developers should not assume
that soft-state placed along a forward path will be encountered along a reverse path.

A route is dynamic in the sense that while it might appear stable it can change at any
time. This has consequences for service developers. Any process that constructs routes
or measures their characteristics should treat the result as a hint and repeat the process
periodically in order to accommodate changes. More basically, no service should have node
addresses embedded in its code, since this would limit it to particular topologies. Instead,
addresses should be passed to capsules as input parameters.

4.2 Case Study I — Multicast

I describe multicast experiments with ANTS along three lines: a problem statement; the
design of the basic service in ANTS; and extensions that exploit the flexibility of an active
network.

I draw two conclusions from these experiments. First, despite the complexity of PIM, it is
possible to construct a similar service in ANTS. This demonstrates that the node API is
sufficient for real-world tasks. Second, it became apparent that there are many variations
of the service that produce different and useful effects for clients. This suggests that the
active network approach will be valuable because, in contrast with a fixed standard, one
variation is as easy to use as another.

4.2.1 Problem and Relevance

The problem addressed by multicast is how to efficiently send one message to multiple
receivers, which are traditionally identified by a group address. This service is widely

85

applicable, for example, for conferencing and replicating information, and has significant
performance advantages over multiple unicasting.

Early work on multicast was pioneered by Deering [Deering, 1989]. Most of the innovation
has been in the routing mechanisms that establish the dissemination trees over which data
is forwarded. The first routing protocols, such as DVMRP [Waitzman et al., 1988], were
targeted at situations in which the members of a multicast group were densely distributed
within a contained region. They worked by pruning the flood of the region. To cater for
wide-area groups, new protocols in which distribution trees were grown explicitly, rather
than pruned from a flood, were explored [Deering et al., 1994]. This reduced the scope of
multicast messages, but resulted in a significant amount of routing state, since a distribution
tree was maintained for each combination of group and sender. Routing protocols such as
Core-Based Trees (CBT) [Ballardie et al., 1993] reduce this state by sharing a single tree
across all senders.

Today, Sparse Mode PIM [Deering et al., 1998] (hereafter referred to as simply “PIM”) con-
tinues this evolution and is arguably the leading candidate for wide-area multicast routing.
PIM is a good test of the ANTS architecture for reasons beyond the choice of a service of
widespread utility that is difficult to deploy in the Internet. Multicast has been the subject
of much research, and after several years of effort PIM is a relatively mature protocol that
is used by a number of ISPs. As such it is also relatively complex. This, combined with
the fact that it does not map to the ANTS architecture in an obvious manner, makes it a
challenging test case.

I briefly describe PIM for those readers not already familiar with it. To receive PIM multi-
cast messages, hosts explicitly join a group via their Designated Router. This router sends
periodic join messages to a rendezvous point for the group, causing a shared distribution
tree that is rooted at the rendezvous point to be constructed within the network. Sources
send to the group by encapsulating their messages and sending them to the rendezvous
point. There they are decapsulated and forwarded down the shared tree. Prune messages
can be used to leave a group.

Receivers (and the rendezvous point) can also initiate source-specific trees that are rooted
at a given source rather than the rendezvous point, if they are deemed worthwhile. This is
typically done to reduce overhead when a source is sending with a high data-rate. Source-
specific joins travel towards the indicated source, and construct additional tree information
in the network. Within the network, the PIM forwarding algorithm understands how to
use both kinds of forwarding state to switch between shared and source-specific trees. To
prevent a source from sending messages via the rendezvous point when the shared tree is
no longer being used, the rendezvous point sends stop messages to that source. Further
features and details are described in [Deering et al., 1998].

86

Derived from class JoinPruneCapsule:

int last;

int holdtime;
int group;
boolean ackReq;
boolean ack;
boolean join;
int S;

boolean WC;
boolean RPT;

public boolean evaluate(Node n) {

Integer I = new Integer(last);
Integer G = new Integer(group);

/!
/!
/!
/!
/!
/!
/!
/!
/!

/!

previous PIM node

route data period

group address

capsule needs ack

capsule is ack

join or prune

"source" (RP)

wildcard (any source) route
shared (RP) tree

look up routing data

RouteEntry r = RouteEntry.get(n, new Integer(RouteEntry.SOURCE_ANY), G);

last = n.getAddress();
if (ackReq) {

ackReq = false;

ack = true;

setDst (I.intValue());

n.routeForNode(this, I.intValue());

ack = false;
} else if (ack) {

if (n.getAddress() == getDst()) {

if (WC && r != null) {
r.iif = I;
r.prune(I);
}
return true;
} else

return n.routeForNode(this, getDst());

if (join && WC && RPT) {
if (r == null) {

/!
/!

/!

/!

/!
/!

/!

/!
/!

update incoming address
send an ack if needed

back to where we came from
there is goes

or process ack data
have we reached previous?

update our route entry

a join for the shared tree
create a fresh entry

r = RouteEntry.New(n, new Integer(RouteEntry.SOURCE_ANY), G,
new Integer(S), holdtime);

if (n.getAddress() !'= S) {
ackReq = true;
setDst(S);
n.routeForNode(this, S);
}

/!

initialize and continue

} else if (n.getAddress() != S && (r.oif.isEmpty() ||
n.time() - r.lastPeriodic > JOIN_PRUNE_PERIOD)) {
// send upstream join periodically

setDst (S);
n.routeForNode (this, S);
}

long timeout = holdtime*1000 + n.time();

r.join(I, timeout);
} else

// update our route entry

[omitted] // other cases not covered here!

return true;

}

Figure 4-1: Pseudo-code for joining the shared tree

87

4.2.2 Service Design

One of the first observations to make is that there is a mismatch between the assumptions
implicit in the design of PIM and ANTS. PIM assumes that all routers in a region will be
multicast-capable, while ANTS allows for networks in which only a subset of the routers can
be re-programmed. PIM also uses periodic timers to maintain routing information, whereas
ANTS does not provide a timer facility for use within the network.

To design an ANTS multicast service, I focussed on resolving these issues to implement the
core PIM mechanism specified in [Deering et al., 1998]: the formation of shared and shortest-
path trees; cutover between them; and forwarding along them. Other aspects of PIM
(namely extensions to multi-access media, the mapping of groups to rendezvous points for
bootstrapping, and interoperation with other multicast routing protocols or administrative
domains) were omitted. While these aspects are necessary for a complete implementation,
they are mostly separable mechanisms that do not contribute significantly to understanding
whether ANTS can successfully support multicast routing. Further, I made no effort to allow
the ANTS multicast service to interoperate with existing PIM implementations by using
identical packet formats. This is because the question being studied is whether a general-
purpose system such as ANTS could have obviated the need for a special-case multicast
implementation in the first place. For convenience, however, IP multicast addresses are
used to identify ANTS multicast groups.

The resulting service is comprised of three co-operating capsule types. Each of these roughly
corresponds to a PIM message, and each is processed by nodes according to the PIM speci-
fication. All three capsules are grouped into a single code group because of the interactions
that PIM requires within the network. The role of these capsules is summarized below,
then each is described in detail.

e JoinPrune capsules are sent by hosts periodically (and by routers when triggered) to
maintain tree forwarding state at active nodes within the network.

e Data capsules are sent by a source to deliver information to the group.

e RegisterStop capsules are sent to a data source by the rendezvous point (the root
of shared tree) to signal the source that the rendezvous point has joined the shortest
path tree.

To describe the network processing of each of these capsules more fully, consider the fol-
lowing scenario. The focus of the discussion is on design considerations and the differences
between an ANTS-style PIM and regular PIM, rather than trying to explain PIM itself.

Before a node can receive data that is multicast to a group, it must join the group. This
is one of the tasks accomplished by the JoinPrune capsule. Capsules of this type are sent
periodically by each receiver to the rendezvous point for the group, setting up reverse path
forwarding state for the shared tree in active nodes along the way. Pseudo-code for this kind
of JoinPrune processing is shown in Figure 4-1. (The complete set of JoinPrune processing
is more involved because it includes other cases, which are omitted here for simplicity. See
the ANTS distribution for details.) The path of these capsules is shown in Figure 4-2. Large
arrows over links represent the path of capsules, and small arrows near nodes represent
forwarding state.

88

rendezvous poi nt

receiver receiver receiver sender

Figure 4-2: Path of JoinPrune (marked as join) capsules as receivers join the shared tree.

ANTS JoinPrune implements all of the major PIM features: shared trees based on the
rendezvous point and shortest-path trees for specific sources. It differs from its PIM coun-
terpart in three respects. The first is a consequence of a separation of function that is
not present in the toolkit. By Internet convention, routers participate in route construc-
tion while hosts only forward packets. Therefore, to handle group membership, routers
act as agents for their local hosts and communicate with them using the Internet Group
Management Protocol (IGMP) [Fenner, 1997]. In ANTS, each host manages its own group
membership operations directly. In PIM parlance it is its own Designated Router.

The strategy for reducing the overhead of JoinPrune messages also differs. In PIM, periodic
timers are used to exchange aggregated group membership information between neighboring
routers. In ANTS, no built-in timer facilities are available. Instead, JoinPrune capsules are
periodically sent by hosts for each group to which they belong. As these capsules pass
through each active node they are filtered so that only one capsule per interval is sent over
a given link for a given group. This is readily accomplished by maintaining information in
the soft-store that is checked before the capsule is forwarded; capsules above the specified
rate are simply discarded.

A third difference is that the reverse path forwarding state kept at nodes has a different
form. In PIM, forwarding state is expressed in terms of input and output interfaces. This
is not sufficient in ANTS because there is no guarantee that the next node encountered on
an outgoing interface will be an active node. To accommodate this, forwarding state is
expressed in terms of node addresses. As the JoinPrune capsules are routed towards the
rendezvous point, they record the address of the last encountered active node in a header
field. Acknowledgements carry address data in the reverse direction to complete the link.
The address data is then recorded in the soft-store of the active nodes, allowing capsules to
be sent through the non-active nodes in-between. In effect, a tunnel that is analogous to
those used in the MBONE is established dynamically, rather than being configured manually.
(This “dynamic tunnel” method might be applied to improve PIM by restricting multicast
forwarding state to those nodes where messages must be replicated. A similar mechanism
is explored in [Tian and Neufeld, 1998].)

89

Derived from class MulticastDataCapsule:

int group; // group address
boolean register; // "encapsulated" register

public boolean evaluate(Node n) {
Integer G = new Integer(group);
Integer S = new Integer(getSrc()); // look up routing data
Integer I = new Integer(last);
RouteEntry r = RouteEntry.get(n, new Integer(RouteEntry.SOURCE_ANY), G);

if (getSrc() == n.getAddress()) { // initialize at first node

if (r == null) { // make new route entry
r = RouteEntry.New(n, S, G, new Integer(getDst()), DATA_TIMEQOUT);
r.regSuppTimeout = 0; // without suppression

} else
r.refresh(n, DATA_TIMEOUT); // kick this soft-state

if (r.regSuppTimeout < n.time()) {

register = true; // unicast to the RP
n.routeForNode (this,getDst());
} else {
[omitted] // send is on source-specific trees
}
} else if (register) { // forward a register towards RP

if (n.getAddress() != getDst())
return n.routeForNode(this, getDst());

else { // turn it round at RP
register = false;
if (r == null) { // if no route data, send stop

RegisterStopCapsule c = new RegisterStopCapsule(group, getSrc());
c.prime(this);
n.routeForNode(c, getSrc());
} else { // otherwise, forward, check rate
forwardPacket (this, r.oif, n);
if (updateThruput(S,G,RP_THRESHOLD_COUNT,RP_THRESHOLD_TIMEOUT,n)) {
[omitted] // initiate source-specific routing
}
}
}
} else { // forward a native packet
if (r !'= null && r.iif != null && r.iif.equals(I)) {
if (forwardPacket(this, r.oif, n)) {
if (updateThruput(S,G,RP_THRESHOLD_COUNT,RP_THRESHOLD_TIMEQUT,n)) {
[omitted] // initiate source-specific routing
}
}
}
}

return true;

Figure 4-3: Pseudo-code for sending data on the shared tree

90

rendezvous poi nt

receiver receiver receiver sender

Figure 4-4: Path of Data capsules after the receivers join the shared tree.

Once the JoinPrune capsules have propagated through the network, the corresponding
group members are in a position to receive multicast data. This is sent with the Data
capsule, which routes itself to follow the established forwarding state. Senders can inject
Data capsules into the network at any time and regardless of whether they have joined the
group. Pseudo-code for Data capsule processing, again only for the shared tree case, is
shown in Figure 4-3. The path of a Data capsule is shown in Figure 4-4.

The full version of the ANTS code implements the major PIM features: shared and source-
specific path forwarding, cutover between the different types of path forwarding with trig-
gered route updates, and Register messages and their suppression. It too differs from PIM
multicast data in several respects.

In PIM, when a source multicasts data that is to be delivered via the shared tree, forwarding
proceeds in two steps. The multicast data is first encapsulated at the local router in a
Register message that is sent directly to the rendezvous point. There it is decapsulated
to reveal the group address and sent down the distribution tree using forwarding state.
The distinction between encapsulated and native multicast data is useful in the Internet
to shield hosts from routing messages. In ANTS, this distinction is unnecessary; recall that
IGMP is not used. ANTS is therefore able to combine the roles of the PIM Register message
and regular multicast data packets without an encapsulation and decapsulation stage.

A second difference is the implementation of the rendezvous point itself. In PIM, it exists
as an endpoint within the network that acts as an independent entity to the extent that it
originates messages as well as receives them. The ANTS model does not allow the creation
of a long-lived process at a remote node. Instead, the required activity is generated by the
multicast data stream itself. For example, in PIM the rendezvous point joins the source-
specific tree for sources that are sending data at a high rate. This avoids decapsulation and
shortcuts paths that would needlessly loop through the rendezvous point. In ANTS, this join
is triggered directly by the forwarding of Data capsules that exceed a rate limit. The rate
information is maintained in the soft-store and updated as Data capsules are forwarded.
As an added bonus, the same mechanism is used at receivers to control when they join the
shortest-path tree.

91

Derived from class RegisterStopCapsule:
int group; // group address
public boolean evaluate(Node n) {

if (n.getAddress() !'= getDst()) // continue to destination
return n.routeForNode(this, getDst());

Object[] key = {new Integer(ROUTE_ENTRY), // look up route entry
new Integer (RouteEntry.SOURCE_ANY),
new Integer(group)}l;

RouteEntry r = (RouteEntry)n.getCache().get (key);

if (r != null && r.timeout > n.time()) // kick suppression timer
r.regSuppTimeout = n.time() + REGISTER_SUPP_TIMEQUT * 1000;

return true;

Figure 4-5: Pseudo-code for processing RegisterStop capsules

The final type of capsule is RegisterStop. Pseudo-code for the processing of this capsule
is shown in Figure 4-5. It is used after the rendezvous point joins the shortest path tree
(which is not pictured). Once the rendezvous point begins receiving multicast data via a
shortest path tree, it must periodically notify the corresponding local router. In PIM, this
kicks a timer that is used to prevent multicast data from being encapsulated in a Register
message. In ANTS, this message is generated from within multicast data forwarding, as
described above. To approximate a periodic message, information is placed in the soft-store
at the rendezvous point for aging. This data is checked during forwarding via the rendezvous
point, and when it is no longer present, a RegisterStop capsule is sent to the source. The
path of this message is shown in Figure 4-6.

4.2.3 Possible Extensions

One of the strengths of an active network is that services can be readily refined as application
needs evolve. Reliable multicast protocols, such as SRM [Floyd et al., 1997] and LBRM
[Holbrook et al., 1995], provide a topical example of this process in action. It has proven
difficult to scale the size of the multicast group with the existing forwarding model, which
sends a copy of a multicast message to all recipients. A significant number of proposals are
now exploring network support for reliable multicast, for example, [Papadopoulos et al.,
1998, [Li and Cheriton, 1998] and [Levine and Garcia-Luna-Aceves, 1997].

In this section, I consider two hypothetical extensions that are intended to convey some of
the directions in which an ANTS multicast service could be readily expanded. Lehman has
also explored a variety of reliable multicast protocols in the context of ANTS [Lehman et al.,
1998].

One extension allows a receiver to send a message to other receivers in its distribution
subtree. This mechanism is referred to as subcasting, and provides a basis for local recovery
schemes. The other discards duplicate messages traveling up the distribution tree. This

92

rendezvous poi nt

receiver receiver receiver sender

Figure 4-6: Path of RegisterStop (marked as stop) and Data capsules after the rendezvous
point joins the sender-specific tree.

mechanism is complementary to multicast forwarding, and provides a basis for preventing
NACK implosion (the overload that occurs when many receivers simultaneously notify one
sender of loss) without introducing delay. It is referred to as suppression. For simplicity,
both mechanisms are considered only in the context of a single shared distribution tree
rooted at the data source.

Subcasting

The subcasting primitive first proceeds up the distribution tree, towards the source, a
specified number of hops, and then forwards data down that portion of the overall tree.

The path of a Subcast capsule is shown in Figure 4-7. Before the capsule is turned, it
is forwarded towards the source and counts the number of multicast nodes along the way.
Default routing can be used for this purpose because the distribution tree is built in terms
of reverse shortest paths. When the capsule has passed the specified number of multicast
nodes (indicated when the turn count reaches zero), a Data capsule is created to deliver the
data to the subtree routed at the current multicast node.

This mechanism requires no additional soft-state and does not slow regular multicast for-
warding.

Suppression

The suppression primitive sends a capsule up the distribution tree, towards the source,
discarding duplicate messages. Ideally the source will receive only one copy of a message
even if it is sent by all group members.

The path of Suppress capsules is shown in Figure 4-8. The forwarding routine uses an
identifier, such as the multicast sequence number in the case of NACK suppression, to

93

match and discard duplicate messages.

rendezvous poi nt

recei ver subcaster receiver sender

Figure 4-7: Path of a two level Subcast capsule and subsequent Data capsules.

rendezvous poi nt

receiver receiver receiver sender

Figure 4-8: Path of Suppress capsules sent from all receivers.

capsule if they vary per capsule.

This service makes limited use of the soft-store and does not slow regular multicast for-

warding.

94

At every node, information in the soft-store is
consulted to determine if the capsule is the first of its kind to have passed through this
node. If so it is forwarded up the distribution tree. As before, default routing via shortest
paths can be used directly. If it is not the first capsule of its kind, then it is simply discarded
as a duplicate. An alternative might be to pass only some fraction of the duplicates, or
only one duplicate per interval; both parameters could be specified as part of the Suppress

4.3 Case Study II — Web Caching

As an example of how active network capabilities can be applied today, I consider the
problem of Web caching that was raised in the introduction. As for the first study, the
discussion is divided along three lines: a problem statement, the design of the basic service
in ANTS, and extensions that exploit the flexibility of an active network.

I draw two conclusions from these experiments. First, ANTS is well-suited to draw embedded
network resources, such as Web caches, into the chain of processing between client and
server. It provides far greater flexibility than the configuration of proxies or use of firewall-
style transparency. Second, there are many variations of the service that produce useful
effects by using embedded network resources in different ways. Again, this suggests that
the active network approach will be valuable in practice.

4.3.1 Problem and Relevance

With the dramatic increase in Web traffic, caching mechanisms are being explored to boost
performance. They do this in three respects: the latency of client requests is reduced; the
load on servers is reduced; and the use of wide-area bandwidth is reduced. Early efforts
improved client behavior to avoid redundant transfers (client-side caching) and redirected
queries through a local agent to improve sharing (proxy caching).

To improve caching further, it is necessary to share information between caches at different
locations in the network. The key problems are: how to locate a copy of a document
by searching through the caches, and how to propagate documents to caches for future
queries. Both can be thought of in terms of routing Web requests and responses through a
shared network of caches. Since performance is related to the underlying network topology,
it is natural to consider combining cache lookup with packet routing. This approach is
being explored by Legedza [Legedza and Guttag, 1998)]. It contrasts with existing systems
that construct an overlay of cache nodes. It has the potential to improve performance by
stripping away the overhead of overlays and retaining packets in the network layer. This
simple strategy may also result in globally cost-effective cache search paths in the same
sense that multicast routes based on shortest paths (like PIM) are known to be effective in
practice [Doar and Leslie, 1993].

The problem that I tackle here is how to control the overall cache lookup and replacement
path with a new network service that combines routing and caching. Besides being topical,
this problem is interesting because it is not well-suited to a pure ANTS service. This is
because cache nodes require a large amount of storage (typically provided by disks) and the
ability to support reliable connections, neither or which fit the notion of an active node.
Instead, I assume that cache nodes will be incorporated into the network infrastructure
at selected points, such as at access links, ISPs, and exchange points. This is already
happening today. The problem that must be tackled, then, is to design a service that takes
advantage of these caches as part of a new network service.

95

4.3.2 Service Design

To provide a caching service, two key pieces of functionality must be designed. There must
be some way for Web requests to locate objects in caches that are a short distance from
the path they follow towards the server. In the reverse direction, there must be a means for
Web responses to transfer objects to these same caches so that they are available to satisfy
future requests.

The design of these mechanisms should meet two goals. First, the impact on network
performance must be minimal. This can be achieved by specializing network processing
only for the request and response packets that establish the data transfer connections but
not for the data transfer itself, that is, only for the signaling packets. The data transfer
itself then proceeds at full speed, without additional processing inside the network. This
strategy contrasts with existing products, in which backwards-compatibility requires that
all packets be processed (to spoof either end of the connection) at each modified router.
Second, the impact on the reliability of the Web must be minimal. Failed caches and active
nodes should not result in persistent failures to retrieve a Web object. This can be achieved
by using default routing (which will route around failed nodes) and having cache/active
node pairs act in concert so that it appears that either both fail or none do.

In ANTS, the resulting service is realized with four co-operating capsule types, each of which
forms its own code group:

e Bind capsules are exchanged between the cache and its associated active node to
synchronize their states.

e Query capsules are sent from clients towards the server. Along the way they may
encounter caches that have a copy of the requested document, in which case they will
be diverted.

e Redirect capsules initiate a connection between the server (or an upstream cache)
and a downstream cache (or client) for the purpose of transferring a document and
redirecting subsequent requests.

e Activate capsules terminate a connection between a downstream cache (or client) and
server (or an upstream cache) once the transfer of a document has been completed
and redirection state has been established.

In addition, regular packets, which do not require special network handling, are exchanged
between the downstream cache and client to transfer the Web document itself.

To describe the network processing of each of these capsules more fully, consider the follow-
ing scenario for document retrieval. It is based on the organization of caching functionality
within the network into caches and active nodes. Each cache node is associated with active
nodes in the region of the network that it serves. Each corresponding active node maintains
a rough table of cache contents in its soft-store. It uses this table to decide whether to
divert Web requests to the cache node from the shortest path that they would otherwise
follow.

96

From class BindCapsule:

public boolean bound; // latched the active node
public long epoch; // web cache generation
public int interval; // binding timeout

public boolean evaluate(Node n) {
// continue until we reach the active node or the cache
if (n.getAddress() != getDst()) return n.routeForNode(this, getDst());

if (!bound) {
// bind node to cache by entering its details in the soft-store
Object[] binding = new Object[2];
binding[0] = new Long(epoch);
binding[1] = new Integer(getSrc());
n.getCache() .put ("CACHE", binding, 3*interval);

// now alter capsule and return to cache for synchronization

setDst (getSrc());

bound = true;

if (n.getAddress() !'= getDst()) return n.routeForNode(this, getDst());

// we are back at the cache
return n.deliverToApp(this, dpt);
}

Figure 4-9: Pseudo-code for processing Bind capsules

cache cache
[a) [a)
z o = =
e o o &

(O—0O

client active active server
node node

Figure 4-10: Path of Bind capsules.

97

From class QueryCapsule:

public int last; // previous cache
public int found; // cache with hit
public long objectID; // requested object

public boolean evaluate(Node n) {
if (found != 0) { // divert to a found cache
if (n.getAddress() == found) {
return n.deliverToApp(this, dpt);
} else {
return n.routeForNode(this, found);
}
}

// otherwise, are we at a cache -- is there a binding?
Object[] record = (Object[]l)n.getCache().get ("CACHE");
if (record != null) {

// if a cache, is there a redirect record?
Object[] redirect = (Object[])n.getCache().get(objectID);
if (redirect '= null) {

// if a redirect too, does it match the binding?
Long bindEpoch = (Long)record[0];
Long redirectEpoch = (Long)redirect[0];
if (bindEpoch.longValue() == redirectEpoch.longValue()) {
found = ((Integer)record[1]).intValueQ);
if (n.getAddress() == found) {
return n.deliverToApp(this, dpt);

} else {
return n.routeForNode(this, found);
}
} else {
n.getCache () .remove (objectID) ; // clear out old data
}
}
last = n.getAddress(); // note cache was here
}
if (n.getAddress() == getDst()) { // now continue to server
return n.deliverToApp(this, dpt);
} else {
return n.routeForNode(this, getDst());
}

}

Figure 4-11: Pseudo-code for processing Query capsules

98

cache cache

(QUERY

O—0O= ®

client active active server
node node

Figure 4-12: Path of a Query capsule that hits in a network cache.

Before a cache can be used by the ANTS Web caching service, it must establish contact
with nearby (and possibly co-located) active nodes. This is accomplished with the Bind
capsule. Its purpose is to bind the cache and active node into a single unit of operation. In
the prototype ANTS service, one associated cache is statically configured, though it would
be straightforward to extend this to multiple active nodes and automatic configuration via
limited broadcast.

The path of the Bind capsule is shown in Figure 4-10. Pseudo-code for the its processing is
shown in Figure 4-9. The capsule is sent periodically by the cache to the active node and
then returned to the cache. Binding of cache to active node is accomplished by checking for
the return of the Bind capsules. If several consecutive capsules are not received, then the
cache can assume that the active node has failed. Binding of the active node to the cache
is accomplished by placing the address of the cache in the soft-store with a short expiration
interval. If the cache fails, then this state will be removed by the node, and the service code
will discover that caching is not currently available. To ensure that the cache and active
node can maintain consistent state when the other fails and restarts, the cache passes an
epoch identifier (defined to be the time of the most recent restart) with the Bind capsule.

Once the caches are up and running, they are used to satisfy Web requests by Query
capsules. These capsules are sent by the client to open a connection to receive the requested
document, that is, they add processing to a TCP-SYN packet. The path of a Query capsule
that hits in a cache is shown in Figure 4-12. Pseudo-code for its processing is shown in
Figure 4-11. It heads towards the server by default, and checks along the way for active
nodes with associated caches, as indicated by information in the soft-store. There are three
outcomes of this check. If the node has no associated cache, the Query continues towards
the server. If there is an associated cache but the requested document does not hit in the
table of contents at the active node, then the Query continues towards the server, noting
the address of the active node for subsequent cache loads. Finally, if there is a cache hit in
the table of contents, then the Query is diverted to the cache. The hit test includes a check
that the active node and cache belong to the same epoch. If not, then old data has been
found, and it is removed. Note that this process flushes the active node table of contents
gradually when the cache is restarted, rather than requiring any one capsule to perform a
large amount of work. In all of these cases, the Query capsule eventually leaves the network
when it reaches either the server of hits in a cache.

The cache or server that receives the Query must load downstream caches (if any have

99

From class RedirectCapsule:

public long objectID; // requested object
public int redirect; // redirecting node
public int requestor; // original client

public boolean evaluate(Node n) {

// have we reached the redirecting node?
if ((redirect == 0) && (n.getAddress() == getDst())) {
Object[] record = (Object[])n.getCache().get ("CACHE");

redirect = n.getAddress(); // if so, lock
if (record !'= null) {
setDst (((Integer)record[1]) .intValue()); // and head to external cache
} else {
setDst(getSrc()); // failure, return to server?
}
}

// continue to redirect, external cache, or server
if (n.getAddress() !'= getDst()) {
return n.routeForNode(this, getDst());
} else {
return n.deliverToApp(this, dpt);
}
}

Figure 4-13: Pseudo-code for processing Redirect capsules

been encountered) as well as see that a copy of the document is returned to the client.
These tasks are accomplished as a series of cache transfers, culminating in the last cache to
client transfer. Each transfer is accomplished by augmenting the signaling of a regular data
transfer (a TCP connection) with the Redirect and Activate capsules. Pseudo-code for
their processing is shown in Figures 4-13 and 4-14. The path of these capsules, responding
to a request hit within the network, is shown in two parts in Figures 4-15 and 4-16. The
first shows a cache to cache transfer, and the second the final cache to client transfer. In a
high performance implementation, these transfers would be overlapped to reduce latency.

The Redirect capsule is used to establish a connection between caches, or between the
last cache and the client, for the transfer of a document. For cache-to-cache transfers, it
is designed to augment the role of a TCP-SYN packet, which initiates a connection. For
the final cache-to-client transfer, it is designed to augment the role of a TCP-SYN-ACK
packet, which accepts a connection initiated by the corresponding Query acting in the role of
a TCP-SYN!. Unlike a regular packet, it is routed via the associated active nodes that were
recorded in the Query. This allows those nodes to observe the cache hit and ensures that
the cache pairings are still valid. Data transfer then proceeds as normal, directly between

!Observant readers will notice that this requires that the client be capable of accepting a connection from
a third party. This is analogous to TCP connections to an anycast address. See [Partridge et al., 1993] for
details.

100

From class ActivateCapsule:

public long objectID; // requested object
public long epoch; // cache generation
public int redirect; // cache to redirect
public int activate; // cache we activated

public boolean evaluate(Node n) {

// have we reached the node to activate?
if ((activate == 0) && (n.getAddress() == getDst())) {
Object[] record = (Object[])n.getCache().get ("CACHE");

activate = n.getAddress(); // if so, lock
setDst (redirect);

if (record !'= null) {
long bound = ((Long)record[0]).longValue();
if (bound == epoch) {
Object[] redirect = new Object[2]; // put it in the cache
redirect[0] = (Long)record[0];
n.getCache() .put(objectID, redirect, 100);
} else {
return true; // unexpected change, die quietly
}
}
}

// continue to node or upstream cache/server
if (n.getAddress() != getDst()) {
return n.routeForNode(this, getDst());
} else {
return n.deliverToApp(this, dpt);
}

Figure 4-14: Pseudo-code for processing Activate capsules

the sender and receiver without special network handling. Similarly, the Activate capsule
is used to terminate these connections after they have been used for data transfer. It is
designed to augment the role of a TCP-FIN packet. Like the Redirect capsule, it is routed
via the corresponding active nodes to allow them to observe the cache load and update their
table of contents.

4.3.3 Possible Extensions

While this basic service has a number of attractive properties, a key strength of using an
active network is that variations can be constructed to make use of the same caching in-
frastructure in different ways. Here, I consider two hypothetical variations that employ
different search and replacement policies that are appropriate to different kinds of applica-
tions. The first variation extends the capabilities of clients, the second of servers. Many

101

cache cache

(data)
w 5 5 w
= =
;El T& &l T;
- A A -
'9(# RED RECT ¥ 'Q
<
Q S ——=_J Q
- - ACTI VATE
client active active server
node node

Figure 4-15: Path of capsules that load a downstream cache.

cache cache

<::::> =
ACTI VATE U
client active active server
node node

Figure 4-16: Path of capsules that return a document to the client.

other variations are possible.

Caching of Timely Data

Today’s Web caches do not store dynamically generated data because the response may
differ each time. The situation is slightly different for continuously varying quantities, such
as stock quotes. This data is dynamic in the sense that it changes over time, but for many
applications it would be sufficient to observe it with a specified granularity. If stock quotes
(or other requests that exhibit these properties) become popular, then the ability to cache
them within the network at all may provide a significant benefit to heavily loaded servers.

It is straightforward to take advantage of timely data by constructing a service that searches
for cached objects of a specified currency. This requires that the cache table of contents
maintained at active nodes include a modification timestamp that can be used to assess
freshness. Then, a new request for timely data, a TimedQuery would include both an object
name and a currency. It would invoke a modified check at active nodes for both availability
and currency, but otherwise proceed as previously.

102

Popular versus Unpopular Objects

Since maximum Web cache hit rates are typically no better that 50%, it is important to
make informed decisions about whether to cache a document to make effective use of cache
space. Bhattacharjee explores one approach: placing documents in every nth cache and
making n small caches appear to be a single large cache [Bhattacharjee et al., 1998]. A
different approach is to try to and assess the popularity of data and discard that not worth
caching.

In a solution deployed pointwise, each cache must make its own decisions as to whether to
cache a document based on the request and response sequences it observes. With a new
caching service, additional information provided by the server or upstream caches — which
have observed previous aggregated request sequences — can assist in this decision. For
example, caches might only store objects that are marked by the server as popular.

It is straightforward to introduce this distinction into the caching mechanism. If a server
simply classifies objects as popular and unpopular, then popular requests are handled as
before. Unpopular requests are handled by having the server contact the client directly.
No new service is needed. A slightly more sophisticated version might involve the server
marking responses with the last retrieval time of the object. Since caches and active nodes
will have varying storage resources (depending where they are in the network) the decision
as to whether a document is “popular enough” to store may depend on both the object
and the cache. A new service could propagate responses back through caches to the client,
while only storing an object if the last retrieval time is hot enough for the cache.

103

104

Chapter 5

Evaluating ANTS

In this chapter, I present an evaluation of the ANTS architecture that is intended to shed
light on the hypothesis of this thesis: that an active network can be used to rapidly and
automatically introduce new services at a reasonable cost in terms of performance and
security. I find the hypothesis to be valid. ANTS is capable of introducing a variety of new
services. The architecture is able to support these new services efficiently, with modest
overheads compared to IP. And the security afforded by the architecture is comparable to
that of the Internet.

The basis for this evaluation is experience gained by constructing new services, such as those
presented in Chapters 3 and 4, and experiments that characterize these new services running
under the ANTS toolkit. The focus of this evaluation is on the tradeoffs between flexibility,
security and performance. I use the Internet as a baseline for comparison. I describe ANTS
performance first, then its security properties and finally the expressiveness of the capsule
programming model. Three kinds of performance are discussed: local node forwarding
performance, code distribution performance, and overall application performance.

5.1 Node Performance

In this section, I characterize node performance both quantitatively and qualitatively. I
focus on forwarding performance for the common case in which code has already been
loaded. The subsequent section examines code distribution performance.

Measurements of the active node report on a Java-based implementation running on a
Unix-based operating system and commodity hardware. They show that the prototype is
able to run at rates in excess of 1700 capsules/second for small packets and 16 Mbps for
large packets, and is largely limited by Java. An analysis of capsule forwarding compares
the intrinsic runtime overhead of the ANTS architecture to that of IP. It shows that ANTS
requires very few additional processing steps.

105

800 | | I T T T
700 | o
B
600 R)
JOIE o
KK - K “XW“X—“—X/— %
<” IV
500 R |
— .
g X—ﬁ%/”%‘ CRelay —+—
> - Java Relay —--x---
g 400 - ANTS DataCapsule ---%--- |
(]
IS
-
300 |
200 |
100 |
0 I | | | | |
0 200 400 600 800 1000 1200 1400

DataCapsule Payload Size (bytes)

Figure 5-1: Median Latency of an ANTS node as a function of Capsule Payload Size

5.1.1 Experimental Setup

All results reported in this section were measured on a Sun Ultrasparc 1 (167 MHz) platform
running Solaris 2.6, a commercial version of Unix, and connected to other ANTS nodes by a
switched 100 Mbps Ethernet. The Java runtime used was an early access release of Sun’s
upcoming JDK 1.2. This runtime includes a just-in-time compiler.

For each experiment, streams of capsules of type DataCapsule were sent through the ac-
tive node. This capsule implements UDP-like functionality within the ANTS framework. It
is intended to be the equivalent of the “null RPC” that is often used to assess the costs
of an implementation. Latency was measured across the complete active node by using
a passive tcpdump-based monitor that records processor cycle counters on packet arrival
within a modified Linux kernel. Throughput was measured with a test harness that gradu-
ally increased the load while monitoring the output of the node to determine when it had
saturated.

To place the ANTS results in context, the performance of a Java relay and C relay running
on the same hardware and operating system were measured. Both relays are short programs
(of less than 100 lines) that simply receive and transmit packets, uninterpreted and with
no additional processing. The Java relay shares the same basic receive and transmit loops
as the ANTS node. It is used to gauge the combined performance of the Java runtime and
measurement platform. The C relay is a straightforward socket-based program that runs
at user-level. It is used to gauge the performance of the measurement platform.

106

1 T T
-
0.9 E
0.8 5 i
*
0.7 | ;g]
*
* 2
0.6 |- % x B 7
- T g | *x &
S 8 o % 8
5 05 [0} o X r 8 -
© : o © !]
T o 3 | ¥ a
- X x P2
04 F ! [E
‘2
|
03 | X *]
% *
0.2 | ‘.‘ * 4
X *
01} .
0 Il Il
0 200 800 1000

Latency (us)

Figure 5-2: Cumulative PDF of the Latency of an ANTS node for 512 byte DataCapsule
payloads.

5.1.2 Latency

The median latency of an active node forwarding capsules is shown as a function of the
DataCapsule payload size in Figure 5-1. The three lines on the graph correspond, from
bottom, to the C relay, the Java relay, and the ANTS node. It is evident that the Java relay
adds a constant overhead of around 250us per capsule, while the ANTS node adds closer to
400us per capsule. All lines increase from left to right, as data transfer costs increase with
the size of the capsule. Importantly, all lines have the same slope. This confirms that the
data-dependent costs of the active node are of the same form as the minimal costs for the
platform. No hidden costs that are a function of the packet length have emerged in the
implementation, and the ANTS node adds a modest overhead to the Java relay.

To examine the latency behavior more closely for a single point on the first graph, Figure 5-2
shows the cumulative distribution of latency measurements for the three systems when the
DataCapsule payload is 512 bytes. Again, all three distributions have a similar form, where
the majority of capsules are processed in essentially a constant amount of time. Because
the measured platform is based on a general purpose operating system, the distributions
all have long tails, with some capsules taking up to 100ms to process when other system
activity interrupts forwarding. The C Relay, Java Relay, and ANTS distributions end with
an increasingly gradual step because the longer and more involved the forwarding routine,
the more likely it is to be affected by system activity. The softening of the beginning of
the step for the Java Relay and ANTS distributions has not been attributed to a particular

aspect of the implementation.

107

10000 T T T T T
ANTS Measured Throughput —+—
ANTS Latency Prediction ---x---

Java Relay Measured Throughput ------
Java Relay Latency Prediction -&--

C Relay Measured Throughput ---®--

8000 T-.. C Relay Latency Prediction ---o--- |
e g
N i S E

= - = S
2 e L [B N
] G g I
a9] L I
4] 0 S S -
2 600 e - g
) o5
g "o
e >ou
3 ool
g O
S 4000 |- O oo . i
<] -6~
< O--e- g
=

2000 |

0 200 400 600 800 1000 1200 1400
DataCapsule Payload Size (bytes)

Figure 5-3: Throughput of an ANTS node as a function of Capsule Size

5.1.3 Throughput

The throughput of the ANTS node, along with the Java and C relays is shown in Figure
5-3 in capsules/sec and in Figure 5-4 in Mbps. For comparison purposes, the latency data
is also shown, inverted to convert it into a rate measure. At close to 1600 capsules/sec
and 6.5 Mbps for 512 byte payloads, the ANTS system is usable for experimenting with
distributed applications at various points in the network, for example, across wireless links,
modems, and access links through T1 (1.5 Mbps) speeds. Importantly, it captures most of
the potential of a Java process running on the platform, indicating that the ANTS processing
is not having a serious adverse effect on performance. It is clear, however, that the system
falls well short of the performance potential of the platform, which is 3 to 4 times better,
though this gap should close as the implementation of Java runtimes and compilers improves.

The graphs show that the node throughput is essentially computationally rather than mem-
ory bandwidth limited. The difference between the measured throughput and that predicted
from latency arises because of the parallelism that occurs when transfers from the network
interface card to main memory proceed at the same time as capsule processing. This dif-
ference increases with payload size, as the network card can perform more work in parallel.
It is pronounced for the C relay where the computational component is small, and barely
visible for the Java relay and ANTS node, where the computational component is larger
relative to the data transfer work.

A potential concern is that throughput will degrade due to memory caching effects when
many protocols are being used concurrently. To test for this, I cycled up to 1000 different
capsule types through the node in a pattern not amenable to caching, and measured the
throughput. No statistically significant degradation was observed, most likely because the

108

implementation is at user-level, though such effects are likely to be of concern in faster
implementations.

70 T T T T T T
g |
ANTS Measured Throughput —+— -
ANTS Latency Prediction ---<--- -

60 | Java Relay Measured Throughput ------ mT .

Java Relay Latency Prediction & =

C Relay Measured Throughput --—-m- I

C Relay Latency Prediction ---o-- e
-

50 | -7 1

Throughput (Mbps)

0 200 400 600 800 1000 1200 1400
DataCapsule Payload Size (bytes)

Figure 5-4: Throughput of an ANTS node as a function of Capsule Size

From class UDPChannel:
public Capsule receive() throws Exception {

do { // loop until we get a capsule
DatagramPacket p = new DatagramPacket (rxbuf.buf, rxbuf.len);
try {
dsock.receive(p); // receive message from network interface

if (p.getLength() <= 0) continue;
// call step 2 onwards: check format and convert to capsule
return decode(new Xdr(rxbuf, 0, p.getLength()));

} catch (IOException e) {
continue; // interrupted

}

} while (true);
}

Figure 5-5: Reception of a Packet Buffer (Step 1)

109

From class Channel:
public Capsule decode(Xdr xdr) throws Exception {
// check ANEP version and parse fields
if (xdr.BYTE() != ANEPVERSION) throw new Exception("Wrong ANEP version");
byte flags = xdr.BYTEQ);
short typeID = xdr.SHORT();
if (typeID != ANTSTYPE) { [[processing for non-ants messages omitted]] }

// skip forwards and check ANTS version

short headerLen = xdr.SHORT();

xdr.index += (headerLen-2) * Xdr.INT + Xdr.SHORT;

if (xdr.INT() !'= ANTSVERSION) throw new Exception("Wrong ANTS version");

// call step 3: map type to forwarding method or invoke code loading
Method m = codecache.fastLookup(xdr.buf, xdr.index);
if (m == null || m.cl == null)

return new DLBootstrapCapsule(m, xdr, client.getAddress());

// call step 4: convert message buffer to capsule object
Capsule c = Capsule.create(m.cl, xdr);

c.chan = this;

return c;

Figure 5-6: Receive Header Processing with ANEP (Step 2)

From class CodeCache:
public synchronized Method fastLookup(byte[]l buf, int off) {
// compute hashcode in same manner as TypelD class
int hcode =
((buf [off+0] +buf [of£f+4] + buf[off+8] + buf[off+12]) << 24)+
((buf [off+1]+buf [of£f+5] + buf[off+9] + buf[off+13]) << 16)+
((buf [off+2]+buf [off+6] + buf[off+10] + buf[off+14]) << 8)+
(buf [off+3]+buf [off+7] + buf[off+11] + buf[off+15]);
int bin = (hcode & Ox7FFFFFFF) % size;

outer: // look for a match in the right bin
for (Method m = buckets[bin] ; m !'= null ; m = m.next) {
if (m.hash == hcode) {
byte[] bits = m.methodID.unwrap();
for (int i = 0; i < 16; i++)
if (bits[i] '= buf[i+off]) continue outer;

// found it, update LRU linked list
movetofront (m.group) ;
return m;
}
}

return null;

}

Figure 5-7: Demultiplexing by Capsule Type (Step 3)

110

From class Capsule:
public Xdr decode() {
Xdr xdr = new Xdr(this.xdr, this.xdr.index);

// version handled, skip over type too
xdr.index += Xdr.TYPEID;

// get other fields
src = xdr.INT();

dst = xdr.INT();
previous = xdr.INT();
resources = xdr.INT();
return xdr;

}

From class DataCapsule:
public Xdr decode() {
// first, call base class
Xdr xdr = super.decode();

// now get our fields
spt = xdr.SHORT();

dpt = xdr.SHORTQ);

data = xdr.BYTEARRAY();
return xdr;

}

From class Capsule:
public static Capsule create(Class cl, Xdr xdr) {
Capsule ¢ = null;

// allocate new memory

try {
c = (Capsule) (cl.newInstance());

} catch (Exception e) {
Entity.error("Class.newInstance failed for "+ cl);

3

// initialize it from message buffer
c.xdr = xdr;

c.decode();

return c;

Figure 5-8: Decoding of a Capsule after Reception (Step 4)

111

From class DataCapsule:
public boolean evaluate(Node n) {

if (n.getAddress() == getDst()) {
return n.deliverToApp(this, dpt);
} else {

// call step 6 onwards: route and send
return n.routeForNode(this, getDst());
}
}

From class ChannelThread:

public void run() {
Node engine = source.client;
Capsule ¢ = null;

while (true) {

try {
// clear this each loop in case receive throws
c = null;

// steps 1 to 4: block while we receive and decode from the channel
c = source.receive();

// make it sequential, assume no recursion
synchronized (engine) {
try {

// save context information on the side
engine.context = c;
c.evaluate(engine) ;
} finally {
engine.context = null;
}
}

if (c.saveBuffer) source.rxbuf = new Xdr(source.rxbuf.length());
} catch (Exception e) {

// log a problem but continue unheeded

source.log(Entity.L[0], "terminated " + c + "with " + e);

e.printStackTrace();

Figure 5-9: Default Forwarding in the Capsule Framework (Step 5)

112

From class Node:
public boolean routeForNode(Capsule c, int dst) {

// look up route in hashtable
RouteEntry r = routes.get(dst);

try {
// call step 7 onwards: header, encode and transmit
return link.send(c, r.addr);

} catch (NullPointerException e) {
throw new NoSuchRouteException();

3

Figure 5-10: Route Lookup (Step 6)

From class Capsule:
public Xdr encode() {

}

Xdr xdr = new Xdr(this.xdr, this.xdr.index);
xdr.index = 0;

xdr .PUT(this.mid(), 0, Xdr.TYPEID);

xdr .PUT(src) ;

xdr .PUT(dst) ;

xdr .PUT (previous) ;

xdr .PUT (resources) ;

return xdr;

From class DataCapsule:

p

}

ublic Xdr encode() {

Xdr xdr = super.encode();
xdr .PUT(spt) ;

xdr .PUT(dpt) ;

xdr .PUT(data) ;

return xdr;

From class Channel:

public final boolean send(Capsule cap, ChannelAddress dst) {
// convert object to message, after calling step 7: header processing

Xdr xdr = encode(cap);

// call step 9: transmit
if (xdr.offset != 0) {
byte[] bytes = new byte[xdr.len];

System.arraycopy (xdr.buf, xdr.offset, bytes, 0, xdr.len);

return send(bytes, xdr.len, dst);
}
else
return send(xdr.buf, xdr.len, dst);

Figure 5-11: Encoding of a Capsule for Transmission (Step 7)

113

From class Channel:
public Xdr encode(Capsule cap) {
// source, etc. must be set already
if (cap.src == 0) throw new SecurityException() ;

// previous is updated for use by the code loading
cap.previous = clientAddress;

// resources decremented here just before we leave
if (--cap.resources <= () throw new ResourceLimitException();

Xdr xdr;
if (cap.xdr !'= null) {
// just update potentially changed header bits
xdr = cap.xdr;
xdr.index = Xdr.INT;
short headerLen = xdr.SHORT();
short packetLen = (short) (headerLen * Xdr.INT + Xdr.INT + cap.length());
xdr.len = packetLen;
xdr .PUT (packetLen) ;
while (xdr.index < headerLen * Xdr.INT) {
short optType = (short) (xdr.SHORT() & Ox3FFF);
short optLen = xdr.SHORTQ);

if (optType == DESTOPTTYPE) {
xdr.index += Xdr.INT; // Skip over scheme identifier
xdr .PUT (cap.getDst ());
break;
} else {
xdr.index += (optlLen - 1) * Xdr.INT;
}
}
xdr.index = headerLen * Xdr.INT + Xdr.INT;
}
else {
[[processing for first-time capsules, e.g., from applications, omitted]]
}

// resume step 7: write rest of capsule
cap.xdr = xdr;
cap.encode() ;

return xdr;

Figure 5-12: Transmit Header Processing with ANEP (Step 8)

114

From class UDPChannel:
public boolean send(byte[] buf, int length, ChannelAddress dst) {
// check validity of address
try {
UDPChannelAddress a = (UDPChannelAddress)dst;
} catch (Exception e) {
return false;

3

// send buffer as datagram
DatagramPacket fr = new DatagramPacket(buf, length, a.address, a.port);
try {
dsock.send(fr);
} catch (IOException e) {
return false;

}

return true;

Figure 5-13: Transmission of a Packet Buffer (Step 9)

| Operation | IP? | Time (%) |
Packet Receive yes 29
Header Processing yes)
Type Lookup no 3
Capsule Decode no 18
DataCapsule Evaluate | no 2
Route Lookup yes 5
Capsule Encode no 14
Header Processing yes 7
Packet Transmit yes 13
Other 4

Table 5.1: Profile of DataCapsule Processing Steps within an ANTS node

5.1.4 Profile

The baseline performance measurements show the overall runtime costs of an active node.
This results from a number of processing steps, some of which are analogous to steps used in
IP forwarding, and some of which are required to support the capsule programming model.
To understand the key steps and their performance implications, I profiled an ANTS node.

The common-case steps for forwarding capsules of type DataCapsule are described below.
The code that implements them is shown in Figures 5-5 through 5-13 to define forwarding
in detail. This code is taken directly from the ANTS distribution and reformatted for pre-
sentation. I compare it qualitatively with the IP forwarding steps as specified in [Baker,
1995] by looking at the rough structure of common case IP processing (excluding IP options,
ICMP and multicast datagrams) and contrasting it with the equivalent forwarding written
as a new service in ANTS.

115

1. A message is received from the incoming network interface via the operating system.
IP executing at user level would perform substantially the same processing.

2. The structure of the message is checked to ensure that it is a valid capsule. The checks
are simple, and IP performs analogous checks.

3. The capsule type is mapped to the appropriate forwarding routine. This is done with
a hash table lookup. There is no corresponding requirement for IP.

4. The capsule is converted from an external packet representation to an internal object
representation. This step requires object allocation and member initialization by
copying. It is an artifact of the current Java-based runtime that is not intrinsic to
ANTS would be performed at compile time with a cast in a C-based implementation.
IP implemented in C requires no runtime overhead overhead for this step.

5. A forwarding routine is invoked. To implement IP-style service, the DataCapsule
forwarding routine simply invokes default forwarding via the active node. While
default forwarding is the same as IP forwarding, expressing it as a service within
ANTS generates some overhead to set up the call in a safe and generic manner.

6. A routing table lookup is performed. In the prototype, a simple hash table lookup is
used, while in IP and a production ANTS system a more expensive longest matching
prefix operation is needed. Note that the greater relative cost of this step in practice
will result in a more favorable comparison for ANTS.

7. The capsule is converted from an internal object representation to external packet
representation. Again, this step is a consequence of the Java-based runtime. It is not
intrinsic to ANTS and is not necessary in a C-based implementation such as is used
for IP.

8. Some header fields are updated, for example, by decrementing the resource limit and
setting the previous node address. The updates are simple, and IP requires analogous
updates, though fewer in number.

9. A message is sent to the outgoing network interface via the operating system. IP
executing at user level would perform substantially the same processing.

As well as these per packet tasks, there are maintenance tasks that must be performed
at a coarser granularity. An IP router must periodically process and exchange routing
packets. An active node must in addition age the soft-store and code cache, and run the
code distribution protocol when it is needed. These maintenance tasks do not noticeably
impact forwarding performance because they occur relatively infrequently; code distribution
overhead is potentially more variable and is discussed in the next section.

Table 5.1 shows the fraction of forwarding time spent in each of these steps. It is based
on profile data collected directly by the Java runtime. The “IP” column indicates whether
substantially the same processing step is required as part of IP forwarding. The measure-
ments show that ANTS requires few expensive steps over IP-style functionality. Much of
the forwarding time is spent receiving and transmitting packets buffers, tasks which are
common to ANTS and IP. Of the remainder, only the encoding and decoding steps are ex-
pensive, which is an artifact of the Java-based implementation strategy. In ANTS, they
require copying because of type safety restrictions, while in C a cast that has no runtime

116

Protocol | Capsule | Latency (us) | Slowdown |

MulticastData 670 1.25
PIM JoinPrune 975 1.82
RegisterStop 560 1.05
Query 615 1.15
WebCache | Bind 685 1.28
Redirect 600 1.12
Activate 620 1.16

Table 5.2: Latency for different types of Capsules, expressed as an absolute time and
Slowdown factor relative to DataCapsule forwarding

cost is performed. Overhead unique to the ANTS framework is small — 5% for type dispatch
and the safe evaluation framework — as a result of the simple forwarding model. From a
computational perspective, the profile data supports the argument that the overhead of
active node can be kept low in those situations where a software-based implementation is
viable.

5.1.5 Service Latency

The remaining effect on node performance is the overhead of running the service code itself.
The cost of this depends, of course, on the complexity of the service. To avoid interfering
with the capsules of other services, the time to forward the capsules of different services
must be within the capabilities of the node and not greatly exceed the default forwarding
time. This is facilitated by the node API operations, all of which complete rapidly and
locally without depending on scheduling or hidden I/O, for example, by blocking due to
multiple threads or disk writes.

To gauge the cost of typical services, I measured the performance of capsules that provide
the multicast and Web caching services described in Chapter 4. I focus on the latency of
a single representative path through the forwarding code. Throughput cannot directly be
measured for all of the capsules, such as route construction capsules that are rate-limited,
but can be inferred from latency. Table 5.2 lists these measurements. They suggest that
the overhead of user-defined processing routines can be low, in most cases adding no more
than 25% to the total processing time.

5.2 Code Distribution

The performance of the code distribution system is important because ANTS is built on the
assumption that occasional bursts of code distribution activity will not interfere with the
continuous provision of a service, as perceived by distributed applications that are using
the network. To assess the validity of this assumption, two questions must be answered:

e What does it cost to distribute code along a network path?

e How often does this occur?

117

Protocol Capsule Code Size | Load Time | Load Time
(bytes) (us) (capsules)
MulticastData 26
PIM JoinPrune 11849 17100 18
RegisterStop 31
Query 1844 4700 8
WebCache | Bind 1821 4750 7
Redirect 1843 4850 8
Activate 1991 4950 8

Table 5.3: Code Size and Code Loading Latency for different types of Capsule

‘ Protocol ‘ Capsule ‘ A (us) ‘ B (us) ‘ C' (us) ‘ D (us) ‘ Total (us) ‘

MulticastData,

PIM JoinPrune 700 1200 | 400 x 13 | 9750 17100
RegisterStop
Query 600 1250 450 2350 4700

WebCache | Bind 750 850 600 2550 4750
Redirect 700 1250 450 2450 4850
Activate 700 1250 500 2500 4950

Table 5.4: Breakdown of Load Latency Components

To answer the first question, I measured the code distribution costs of the prototype, and
used the results to construct approximate analytical models that predict code loading per-
formance along entire network paths. I find that, for small code sizes, code distribution
costs are low in terms of loss, bandwidth, and latency. Code distribution is unlikely to
adversely affect applications. To place the models in context, I compare them with static
code loading and an alternative scheme that uses TCP connections and code servers. This
demonstrates that the properties of the demand pull scheme provide a number of benefits.

The answer to the second question depends on the traffic characteristics of a large ANTS
network, which are presently unknowable. This leads me to consider the impact of different
operating regimes. I conclude that code distribution activity is likely to be limited enough
to make the use of new services feasible for most situations of interest.

5.2.1 Measured Local Costs

Table 5.3 shows the performance of the code loading system between a pair of adjacent nodes
for the multicast and Web caching services. The size of the code group and the additional
latency attributable to the load operation are given. The measurements are taken under
light load, with negligible propagation delay and ample bandwidth between nodes. No cross
traffic is present since its effect is mainly additive: capsule forwarding and different types of
code loading can occur concurrently and in a manner that is fully interleaved at the capsule
level.

The loading times are positively correlated with code group size and small in absolute terms,

118

Previ ous Node Loadi ng Node

trigger capsule

iA
code request

| e

B
code responses
C
."____""------§§§§§§§§§§.- time

""""~":;;;~:;;;;;;;;-~"“‘-n-

D + capsul e
processi ng

out goi ng

Figure 5-14: Components of a Code Loading Event

though they can be more than an order of magnitude greater than the corresponding capsule
forwarding times. The largest load time occurs for the multicast service. This is because
the PIM definition leads to a single large code group, since MulticastData capsules can
create JoinPrune and RegisterStop capsules within the network. In contrast, the Web
caching service allows the different forwarding routines to be carried separately and has
much smaller times.

To better understand these times, I separated the total load time into its components.
These are defined as shown in Figure 5-14: an initial delay before the load request capsule
is sent (A), the delay until it has been processed and the first response appears on the wire
(B), the delay between subsequent responses (C), and the final delay while the loaded code
is reassembled before execution (D).

These results are given in Table 5.4. They suggest that the loading delay stems mainly from
two sources, both of which can be addressed in an improved implementation. More than
half of the load time is spent reassembling and checking the code before execution. This is
due in part to a Java implementation of the MD5 algorithm and buffer copying. The delay
to send out the first capsule is noticeable and also larger than necessary because the code
is not kept in a format that is ready for transfer. Further improvements can likely come
from a more compact code transfer format. This is because the current format is larger
than necessary (see Section 3.4 for details) and costs such as fingerprint verification and the
generation of response capsules are proportional to code transfer size.

119

5.2.2 Approximate Global Costs

The overall costs of code distribution seen by an application are those of loading a new
service along an entire network path. To help understand these costs, I constructed ap-
proximate analytic models for the additional loss, bandwidth consumption and latency seen
by capsules that require code distribution. These models compare ANTS to a conventional
network, which has no additional code distribution costs because services are statically
deployed.

A model of code distribution along a network path first requires models of a network path
and code to be distributed. I begin by postulating the following:

e A path between two applications that is made up of A equal length “hops” between
adjacent active nodes. There can be an unspecified number of non-active nodes too,
but they do not affect the model. For a relatively long path between MIT and Berkeley,
there are approximately 20 routers, so in the case that the path is fully active, A = 20.

e A one way path delay of D, which summarizes the latency contributions of propaga-
tion, transmission, and congestion delay. For a relatively long path between MIT and
Berkeley, D =~ 50 ms.

e A single code group that can be transferred with N capsules, each containing 1 KB of
code, the fragment size used in the prototype. I consider N = 16 to be a large group.
This is larger than the code size of PIM, the largest of the services I have studied with
ANTS.

I first consider capsules that are lost due to code distribution failures. For a network in
which there is sufficient memory to cache service code while it is being used, losses must
stem from congestion or bit errors. I assume that the probability of a single capsule being
lost in this fashion is L, lumped at a single bottleneck node along the path. Measured loss
rates vary considerably in the Internet depending on factors such as time-of-day. Paxon
found average losses of L ~ 5% and a single bottleneck in the vast majority of transfers
[Paxon, 1997]. For this simple model to be adequate for each capsule, code distribution must
not itself congest the network. For the prototype, this is the case only when N is small so
that router buffers are able to absorb code transfer bursts. (As an indication of “small”, the
dynamics of TCP result in bursts of approximately the bandwidth-delay product, which for
cross-country trips at T1 rates is approximately 16 KB.)

In ANTS, the loss of any code distribution capsule will cause the loss of the capsule waiting
for the code. There are N + 2 capsules in a complete load exchange, counting the original
capsule and the load request as well as the responses. The probability that a full load
succeeds without the loss of any of these capsules is:

Probabilityruy Load Succeeds = (1 — L)(N+2) (5.1)

This probability is a lower bound on the probability that subsequent loads succeed, since
the scheme can make incremental progress. It can thus be inverted to provide a weak upper
bound on the expected number of capsules that must be sent by an application to complete
the load and result in a capsule being delivered to the destination. This number grows

120

exponentially with the size of the code group, and for L =~ 5% reaches two when N = 12.
This result reflects that fact that the demand pull protocol is effective for small code group
sizes, and would require further support mechanisms to handle large code sizes without
interfering with loss.

The bandwidth consumed by code distribution along a path is a function of the size of the
code group. I ignore loss since the number of lost capsules will be small compared to the
total (because L is much closer to 0 than 1) and losses contribute only a small amount to
the total since both schemes make incremental progress. All N code capsules and one small
load request capsule must be sent across each hop:

Bandwidthayts = N + 1 capsules

(5.2)
~N KB

This simple result shows that, assuming a capsule follows a shortest path route, ANTS
consumes close to the minimal bandwidth of one copy of the code per hop.

The latency that code distribution adds to a successful transit of the network by a capsule
is also a function of code size. Again, I conservatively ignore the affect of prior code
distribution losses, since these can only reduce the latency of a successful loads because
the scheme makes incremental progress. To charge for the processing costs associated with
code distribution, I assume that there is a delay of approximately 1 ms per code loading
capsule, and that these delays combine sequentially for each capsule involved in the code
load sequence. This is roughly the measured behavior of the prototype.

As well as the capsule processing costs, one round trip latency of 2D /A between each pair
of active nodes is needed to send the code request and return the first response. Combining
these factors, the total added latency for the entire path is thus:

2D
Latencysnrs = A((N +2) + 7) = A(N +2)+2D ms (5.3)

This result is linear in path length, code size and round-trip delay. For the cross-country
path (A = 20 and D = 50), and a large code group (N = 16), ANTS code loading adds
460 ms. This is well within the normal transit time variations measured in the Internet
and reported in [Paxon, 1997] as between 0.1 and 1 seconds. This implies that occasional
delays within the network due to code distribution activity will not be identified as such by
applications.

5.2.3 Comparison with an Alternative

To help place the ANTS scheme in context, I construct similar models for an alternative
code distribution scheme based on TCP connections to a well-known code server. I refer to
this scheme as SERVER. It is motivated by active network systems such as [Decasper and
Plattner, 1998] and [Nygren, 1999], and is interesting primarily in the ways that it contrasts
with ANTS.

121

With SERVER, by definition, capsules are no more likely to be lost if they require code
loading than not. This is because the code transfer is reliable, so that compared to ANTS,
losses that would be handled by applications are handled by the code server within the
network. Thus instead of directly seeing increased loss, applications will perceive increased
latency and competition for bandwidth.

To model these effects, I assume the same kind of network path as before with a single code
server that lies directly on the path at its midpoint. This is the optimal location for a single
server solution assuming shortest paths. Again, I ignore loss because its impact is small.

For SERVER, bandwidth is consumed by the same kind of capsules as for ANTS, plus two
additional capsules for TCP connection establishment, two for teardown, and N for data
acknowledgements. This results in the transfer of 2N + 5 capsules per load. All of the
additional capsules are small, so that the volume of the transfer is still approximately
N KB. However, since the code server is in the middle of the path, these code loading
capsules will transit some hops multiple times. The sum over active nodes of the number
of code loading capsules times the number of nodes traversed yields the total number of
capsule-hops required to transfer the code along the entire path. Splitting the sum into two
parts (since the code server is at the midpoint) and dividing by the number of nodes yields
the bandwidth consumed per hop:

i=A/2
Bandwidthssrse = % X Y ix (2N +5)
=1
(2N +5) x (A+2) (5.4)

= [
1 capsules

_Nx(A+2) KB
- 4

Unlike ANTS, this result is linear in the number of active nodes. For a cross-country path
(A = 20), the bandwidth multiplying factor of SERVER over ANTS is 5.5. This illustrates the
advantage of hop-by-hop transfer of code along the path that the capsule follows compared
to loading from a fixed location. Schemes in which loading occurs from many locations can
of course be developed, but have hidden costs such as distributed directory support and are
still likely to be more expensive than ANTS unless directory nodes are as abundant as active
nodes.

For SERVER, additional latency comes from the longer path between the code server and
active node and the dynamics of slow-start, which spreads packets over time. I model TCP
dynamics simply, conservatively ignoring loss and assuming that the processing time for
TCP messages is zero so that their contribution to the total delay comes only from round-
trip times. I still charge code capsule processing times because in the prototype much of
their cost occurs after all code capsules have been received.

Compared to ANTS, SERVER requires one extra round trip for connection establishment, but
not for teardown since it can proceed in parallel with capsule processing. Slow-start doubles
its window every round-trip time (RTT) before congestion is detected. The best time to
send P packets is thus floor(lg P) x RTT. Combining this with ANTS costs and summing
over the different RTTs along the path, which are multiples of D/A:

122

Latencysgrver = A(N + 2) +2 Z
i=1

:A(N+2)+2D+AD—I—% X floor(lgN) x (A +2)

4iD v iD x floor(lg N)
A A

(5.5)
D
= Latencysxrs + AD + ike floor(lgN) x (A+2) ms

This form shows the contribution of increased path length and slow-start clearly. Recall
that for the cross-country path (A = 20 and D = 50), and a large code group (N = 16),
ANTS code loading took 460 ms. Loading along longer paths with SERVER increases this
latency by 1000 ms. Slow-start increases the latency by a further 1120 ms. This gives a
total of 2560 ms, which is beyond the range of normal variation and will likely be perceived
by applications as loss.

5.2.4 Frequency of Code Distribution

The overall effects of code distribution on the network depend on its frequency as well as
the cost of loading individual network paths. The frequency of loading depends in turn on
the traffic patterns of a large ANTS network, which I consider in terms of two operating
regimes.

I expect that, while many services will be used for experimentation over time, few services
will account for the vast majority of capsules at any given time, in the same way that
most traffic today is HTTP, SMTP and FTP. Assuming that node caches are large enough
to hold the “working set” of network services, commonly-used services will be loaded into
the network infrastructure once and stay there for their useful lifetime. In this operating
regime, code loading activity is rare and its affect on the network as a whole negligible.

Alternatively, active networks such as ANTS allow custom services to be constructed as
needed. In an operating regime where there are many custom services (which by their na-
ture are not shared by different applications) a greater amount of code loading is needed.
In the worst case, a custom service must be loaded once at the beginning of each applica-
tion session. (Again, I assume that network has been reasonably dimensioned so that the
“working set” of services fits in node caches.)

In this extreme, the impact of code loading depends on the session size. As a simple model,
I assume that loading a new service causes each node to process on the order of ten capsules,
totalling 10 KB of data, and that each of these code capsules requires approximately the
same amount of processing as a capsule for which the service code has already been loaded.
This is roughly the behavior of the prototype.

Despite these worst case assumptions, it appears feasible to deploy new ANTS services with
minimal overhead even for moderately sized sessions. For example, code loading would
consume 1% of the bandwidth and 1% of the node processing time (effectively slowing the
whole network by around 1%) when the session size was 1000 packets of 1 KB each. This
might correspond to the transfer of a 1 MB video clip.

123

5.3 Security

If not well-designed, an active network might suffer from protection, resource management
and other types of security problems as a result of allowing untrusted code to execute in
sensitive contexts. To evaluate ANTS in this respect, I characterize the threats that new
services present, how they are handled, and how they compare with the behavior of the stan-
dard Internet protocols. I find that ANTS raises few additional security concerns compared
to the Internet. Most threats can be handled by active nodes locally and without trusting
service code or external parties, with the exception that global resource consumption must
be certified as reasonable by a central authority.

5.3.1 Service Protection Threats

Protection threats are those that directly affect the execution of a service within the network
so that it is no longer isolated from other code and hence no longer guaranteed to behave
correctly. Compared to the Internet, additional protection threats in ANTS must stem from
the transfer and execution of code within the network. There are several potential ways
that services can affect the behavior of each other in unintended ways that cannot occur in
the Internet except in response to a faulty implementation:

e the node may be corrupted by service code
e service code may be spoofed
e service state held at a node may be corrupted by other service code

e capsules using the new service may be manipulated by other service code

The first threat, corrupting the active node itself, is met through the use of safe evaluation
techniques for executing service code. While the ANTS toolkit relies on the properties of
Java, other implementations could be based on proof-carrying code (PCC) or software-based
fault isolation (SFI). The net result is that the sound implementation of the node operating
system implies that it cannot be crashed or otherwise corrupted by arbitrary service code.

Code spoofing, the second threat, is met through the use of fingerprint-based names for
capsule types. ANTS uses a code hierarchy of forwarding routine, code group and protocol.
A belief in the one-wayness of the fingerprint function, which is based on MD5 [Rivest, 1992]
in the prototype, implies that none of these code units can be spoofed for a given capsule.
This means that there is no ambiguity as to which forwarding routine to run, and that
new forwarding routines cannot be added to an existing protocol to, for example, capture
private information.

A third means of interfering with a service is to corrupt the state that it maintains at
an active node. This is prevented in ANTS by building on the fingerprint-based capsule
types to separate the state of different services. The only state retained at a node after a
capsule is forwarded is that placed in the soft-store. Access to the soft-store is partitioned
by protocol type, which guarantees that state maintained on behalf on one service will not
be manipulated by code corresponding to another service.

124

A forth threat is that capsules using a new service may be manipulated by other service
code. This is prevented by supplementing the previous mechanisms with a restricted active
node API. There are no calls exported by this API that allow one capsule to control the
forwarding of subsequent ones, and all state that can indirectly influence forwarding is
carefully managed by the node. Data kept in the soft-store is partitioned by service for
protection, as described above, and data shared between services such as the default routing
table is treated as read-only. This means that it is not possible to construct a service that,
for example, searches the network and discards capsules belonging to another service. Nor
is it possible to construct a service that, for example, alters the default routes that will be
followed by capsules belonging to another service.

In sum, ANTS provides measures that defeat all of these kind of threats. This implies that
the protection provided by ANTS is equivalent to the protection afforded to protocols in
the Internet today. (Arguably, ANTS could provide better protection by addressing human
errors. For example, bugs in many protocol implementations can be caught by one small
core that relies on safe evaluation techniques, while the use of protocol types that are based
on fingerprints of the corresponding code prevents versioning errors. But I ignore such
factors for a rough analysis.) Further, this protection is provided despite the fact that ANTS
services are implemented with mobile and untrusted code, rather than static trusted code.
No central trusted authority is needed to obtain the required level of protection, which
eliminates accidental as well as malicious attacks.

In the larger context, however, Internet security is considered poor, and is in the process of
being extended. Both ANTS and the Internet protect different protocols from interfering, but
not different users of a protocol from interfering with each other. This kind of protection
can be provided using measures such as authentication and encryption. In the Internet,
the IETF IPSEC working group is adding these features to IP. Similar measures could
be added to the ANTS architecture by extending the node API with security calls that
services could combine to meet their own security needs. For example, in the case of Web
caching, capsules that bind a cache to an active node should be authenticated, since allowing
arbitrary users to send these capsules has the potential to disrupt the caching service. Tt
is necessary, however, that end-to-end encryption and authentication be composed with a
service rather than simply layered below it in the protocol stack. This is because if a packet
is completely encrypted, the ANTS header fields would be inaccessible within the network.
The same constraint applies to value-added processing in the Internet today, for example,
Snoop-TCP and firewalls that need to examine TCP header fields.

5.3.2 Resource Management Threats

In contrast with protection threats, resource management threats affect the performance
of a service, rather than its correctness, by consuming shared resources in an unreasonable
fashion. By “unreasonable” I mean in a manner that can starve another service, rather
than in a strictly balanced manner according to some notion of fairness.

In the Internet, the resources that are consumed as a packet is forwarded from source to
destination are relatively well understood in terms of a static model that strictly limits
bandwidth, memory and processing time. In an active network, resource consumption is
driven by programs. It can be much more dynamic in nature, and must be restricted in

125

its form to ensure that the effects of one service on others or a region of the network are
reasonable.

In ANTS, one service can potentially interfere with the performance of another in three ways.
The first two of these threats are prevented in the Internet today by the design and correct
implementation of IP and other network protocols.

e a capsule may consume a large, possibly infinite, amount of resources at a single node;

e a capsule and other capsules it creates within the network may consume a large,
possibly infinite, amount of resources across multiple nodes; and

e a service may send a large, possibly infinite, number of capsules across a region of the
network.

The first threat, too many resources used at a node during the forwarding of a capsule,
is detected and handled by each ANTS node. This is relatively straightforward because
it is a local matter. Long running forwarding routines are broken with a watchdog timer.
Access to memory and bandwidth is also limited by using the resources header field, which
prevents a capsule from sending too many outgoing capsules and placing too many objects
in the soft-store. Other resources, such as the stack, can be similarly limited by checks
in the runtime or at loadtime, though this is not done in the prototype. It would also
be straightforward to enforce different local limit schemes than are used in the prototype
without trusting the service code, for example, a set maximum bandwidth and soft-store
allowance. Thus while the design of an active node may pose engineering issues, local
resource management concerns are not complicated beyond those raised by the IP model.

The second threat, bounding resource consumption across a group of nodes, is more difficult
to address. In both the Internet and ANTS, packets and capsules would consume unbounded
resources if blindly forwarded around a routing loop. In IP, this is prevented by using a
TTL field (or Hop Count in IPv6). In ANTS, the same mechanism is used to prevent an
analogous class of infinite loop program errors.

This mechanism, however, does not prevent capsules from consuming an excessive (though
bounded) amount of node resources if directed to do so by a poorly designed service, for
example, by ping-ponging between two nodes until the resource limit is exhausted. I have
argued that the resource consumption of one capsule is “reasonable” if it visits each node no
more than k times, assuming there are no loops in the standard routing tables, and where
k is a small number such as one or two. This definition readily allows multicast services
and accommodates Internet protocols, but disallows loops and flooding behavior such as
ICMP smurf attacks. I refer to protocols that satisfy this definition for some value of k as
k — bound.

To ensure that services satisfy this definition for small values of k, nodes rely on a security
policy in which only service code that is certified by a trusted authority with a digital
signature is freely executed. This mechanism is weaker than the other mechanisms of the
node operating system in that it depends on external parties. Nonetheless, it is arguably at
least as strict as that used in the Internet today and yet provides a system that is capable
of evolving much more rapidly than is possible today.

It is at least as strict as standardization (in the case that the certification authority is the
equivalent of the IETF) because a single implementation is approved. This implementation

126

can be tested, and bugs that arise when implementing a standard are avoided. It can
proceed more rapidly because certification differs from standardization in that it does not
seek to define a single preferred behavior. Rather, it seeks to establish that a service
makes reasonable use of overall network resources, regardless of whether it is considered
an effective means of accomplishing a particular task. Further, the ability to run new but
not yet certified services at a reduced level of performance simultaneously allows for rapid
experimentation.

The final threat, that heavy use of one service may starve another, exists in both ANTS
and the Internet. It is not well addressed in the Internet today because drop-tail or FIFO
routers, which provide a poor separation of traffic flows, are prevalent. This area is the
subject of much research, and scheduling algorithms such as RED and fair queueing that
provide a greater degree of isolation are in the process of being developed and deployed.
This type of threat is no greater in ANTS than the Internet, and the same measures are
equally applicable.

5.4 Expressiveness

The example services explored in Chapter 4 demonstrate that ANTS provides a kind of
flexibility that is not readily available in the Internet. To evaluate the expressiveness of the
system, I characterize the kinds of service that ANTS can readily introduce, and those that
are not well-suited to the capsule model.

I find that ANTS is able to introduce a wide variety of services that are difficult to handle
in the Internet today. Rather than list potential new services that have been mentioned
during the course of the dissertation so far, I have chosen to present a number of design
patterns. These patterns give a good idea of the kind of potential services because they
abstract the programming forms that have proven useful across a range of services. In
describing the kind of services that cannot readily be introduced, I use examples to suggest
how complementary techniques can act in synergy with ANTS.

5.4.1 Service Design Patterns

Over the course of experimenting with multicast, Web caching and other services, a number
of programming forms came up repeatedly. These forms avoid design pitfalls and fulfill their
function relatively efficiently. They tend not to be straightforward mappings of distributed
graph algorithms, such as breadth first search, because of the need to accommodate con-
straints such as unreliable transfer and storage combined with a mix of active and non-active
nodes.

Custom Routing and Forwarding
A strategy to forward capsules along customized routes is to use one type of capsule to

establish the route and another to follow it. The capsule that establishes the route can
express it in terms of default routes and maintain it in the soft-store. The capsule that

127

follows the route then simply looks up the route in the soft-store and proceeds along it to
the next active node. The PIM service utilizes this pattern and extends it to multicast.

This strategy is simple to understand and code. It is efficient since the rates of route con-
struction and use are decoupled. Typically, the routing capsule will be sent only periodically
to maintain the contents of the soft-store, allowing the overhead of route construction to
be amortized over a flow of packets. The resulting size of the code is also small since the
routing and forwarding capsules can be placed in separate code groups. Further, with a
standard form of routing record and identifier, for example, Multi-Protocol Label Swapping,
this strategy is amenable to high-end routers, where forwarding is performed with hardware
support.

Forwarding with Filtering

A number of effects can be achieved by having capsules discard themselves during forwarding
depending on the contents of the soft-store. The state that is maintained can be considered
a filter function to which many capsules are input but only few are output. As with all
services based on the soft-store, the filter function is not guaranteed and can retain memory
only over a short period of time. Soft-state failures will result in fewer capsules being
discarded than expected.

Some examples of filter function classes and their effects are:

e Discard based on number. Passing only the first capsule per application token (such
as a sequence number) produces route flooding patterns such as NACK suppression.

e Discard based on time. Passing only x capsules every y seconds was used to reduce the
overhead of PIM route maintenance by limiting the aggregate rate of packet streams.

e Discard based on loss. If one part of an application unit such as an MPEG frame
is lost due to congestion, then the remainder can also be dropped. More interesting
alternatives that require somewhat more computation are priority queuing and drop
priority.

Forwarding with Additional Processing

Capsules traveling through the network can be made to undergo additional processing at
a particular location. This pattern is demonstrated as part of the Web caching service of
Chapter 4, in which cache processing is applied to Web requests at selected nodes.

To tie additional processing into the regular capsule processing in a robust manner the
properties of the soft-store are exploited as follows. The process controlling the additional
processing (for example, the Web cache) periodically refreshes activation information in the
soft-store of the active node at which capsules are to be intercepted for additional process-
ing. Capsules being forwarded through the active node check this information, and divert
themselves for the additional processing if needed. Since the soft-store ages information,
capsules will only retrieve the information needed to divert themselves if the controlling

128

process is functioning, and otherwise will continue regular processing. The controlling pro-
cess can also get an indication that the active node is running by relaying capsules through
it in the same manner as the Bind capsule of the Web caching service.

This pattern can be used to tie heavyweight capabilities at nodes within the network in-
frastructure, representing transcoding, compression, and caching engines, into the chain of
capsule processing. It is more powerful than the node extensions available in the ANTS
toolkit, since the additional capabilities can reside at nearby nodes and capsules diverted to
reach it. This pattern can also be implemented efficiently (though it is not in the prototype)
by using the observation that the activation switch essentially re-binds the forwarding rou-
tine that corresponds to a given capsule type, and thus occurs on a much coarser granularity
than the packet rate.

Optional Processing and Piggybacked Events

As capsules travel through the network they can be subject to processing that is not always
required, and can trigger other events by their presence. An example of the former is that
the contents of a capsule might be encrypted if it is about to leave a trusted administrative
domain or fragmented if it is larger than the next link MTU. An example of the latter is
that if routing state is found to be incomplete during forwarding then route construction
messages might be triggered.

Such changes can often be signaled with special-purpose header fields on the corresponding
capsule. This approach is both robust and efficient.

It is robust because the changes are associated with individual capsules and as such can
adapt on a per capsule basis. Alternatives that try to amortize changes over all of the
capsules of a flow are fragile because it is difficult to estimate how long path characteristics
will be stable. Alternatives such as signaling events with additional capsules may result in
intermediate states being visible, such as an event whose trigger is lost, or contribute to
instability in the same manner that source quench packets have proved to be of dubious
utility in times of congestion.

It is efficient because no additional capsules are created and the space consumed by header
fields is small. With an improved implementation, it would be possible to eliminate this
overhead completely by encoding this state as part of the capsule type.

5.4.2 Complementary Services

The example services and preceding design patterns show that ANTS provides sufficient
flexibility to express a wide variety of new network services. By design, however, it is not
well suited to all kinds of services. In particular, the three classes of service described below
are difficult to model and help to characterize the solution space of the approach. These
services are best deployed by complementary means.

129

Imposing Policy on Existing Services

Since the processing that can be applied to a capsule is determined by its type when it
is sent into the network, it is not possible to deploy processing that augments an existing
service in a fully backwards-compatible manner. Instead the ANTS approach focuses on
innovation, where users request the new service directly. Firewall processing, for example,
cannot be deployed in a straightforward manner because it will not be applied to capsules
unless they request it, defeating the purpose of the firewall. This restriction is deliberate,
since the remote upgrading of processing in a backwards-compatible manner has obvious
security ramifications. Supporting these services would complicate the basic model with
requirements for naming different flows and authorizing users to manipulate them.

Instead, these kind of services are handled quite effectively by the existing pointwise mod-
els, for example, Cisco IOS upgrades, since they are often intended to impose policy at a
particular location in the network, rather than processing along a path. The models can be
easily combined with the addition of appropriate node API calls that include authorization
checks. This combination might also be useful to permit select nodes to accept old-style
packet formats for backwards-compatibility and map them into new format capsules for
upgraded service.

Heavyweight Tasks

Customized forwarding routines are intended to be compact and execute at the packet
rate. Services that require large amounts of code or processing are therefore not well
supported. While there is no hard and fast line between these regimes, I expect that tasks
such as transcoding (between different audio and video formats) and compression are beyond
the capabilities of the code distribution system. Further, other heavyweight services that
include reliable transport or stable storage cannot be expressed within the ANTS architecture
because the node lacks the necessary API calls.

Instead, heavyweight services are modeled in the ANTS architecture as capabilities that are
built in to an active node as part of the heterogeneity of the network infrastructure. For
example, a router may or may not have an attached Web cache. This view does not mean
that heavyweight components within the network infrastructure cannot evolve, but rather
than they cannot be extended at the capsule level.

The ANTS model works in synergy with this evolution outside of the capsule model because
once the capabilities of a node are changed by the local administrator all users have immedi-
ate access via new ANTS services. This model of operation is supported by the ability as part
of the node API to query if a given extension is present or not. Unlike transparent upgrades
to the Internet, a new ANTS service can use the capabilities present at a node to determine
how it should be forwarded, rather than accept some default configuration. Further, nearby
nodes supporting heavyweight capabilities can be combined into the chain of processing as
was demonstrated by the Web caching example. Thus the ANTS approach works well with a
network infrastructure in which components are embedded to support value-added services:
it provides the computational glue that is able to combine the capabilities of the embedded
components in a flexible manner.

130

Widely-Held Assumptions

Finally, a number of aspects of the architecture cannot easily be changed because they are
widely shared across the network. This includes assumptions that are hard-wired into the
capsule format (such as addresses, types, and resource limits) as well as capabilities required
by all active nodes (such as default routing and code distribution).

The chief benefit of ANTS compared to the Internet is that the number and scope of these
assumptions is greatly reduced. While it would perhaps be preferable to have an archi-
tecture that encoded no assumptions, this position is untenable. It would result in every
node shouldering the burden normally borne by the sum of network nodes, for example, the
discovery and maintenance of a routing database. It would result in the repeated construc-
tion of commonly used mechanisms, such as code caching to improve performance. And it
would defeat properties that bound the program form of services for the overall benefit of
the network, for example, resource limits that prevent infinite loops, and a naming scheme
that efficiently separates service state.

Changing widely shared assumptions requires versioning (and hence an extended transi-
tion period) if a backwards-compatible upgrade cannot be designed. This is exactly what
happens today for IP, and a version field (analogous to the IP version field) exists at the
beginning of the ANTS header fields for this purpose. In some cases, leeway is available with-
out the need for versioning. For example, default routing might be upgraded by extending
the node API, which is effectively a version change, but one that can be compatible with
nodes that are not upgraded. Similarly, with a careful design of the node API, new code
distribution services might be synthesized by transferring the code that implements them.

An interesting case in point is that of addresses, since one of the necessary changes to the
Internet is an increase in the size of the address space as part of [Pv6. This task can
readily be accomplished in ANTS with a source routing mechanism — expressed in terms of
existing addresses for compatibility — that provides the appearance of a deeper hierarchy
of addressing. This is what was proposed for PIP [Francis, 1993, Francis and Gondivan,
1994], a candidate for IPv6, and effectively what happens with the NAT (Network Address
Translation) boxes that are being used to increase the address space in the Internet today
[Egevang and Francis, 1994]'. Conversely, an ANTS network cannot easily accommodate
the wholesale change to IPv6 addresses in all capsule formats, since it cannot change the
behavior of all nodes at the same time. Of course, IPv6 is proving to be extremely difficult
to deploy in the Internet for precisely this reason, requiring complex transition plans to a
new address space rather than a natural evolution of the existing one. Arguably, approaches
that can be more effectively localized (and so are more amenable to introduction in ANTS,
would be more successful.

'See also Internet Drafts, Traditional IP Network Address Translator (Traditional NAT), P. Srisuresh
and K. Egevang, July 1998, for updated usage, and Network Address Translation — Protocol Translation
(NAT-PT), P. Srisuresh and G. Tsirtsis, August 1998, for the application of NAT to IPv6 transition plans.

131

5.5 Application Performance

A compelling reason to use new network services is to improve performance, and so it
is natural to ask whether ANTS can be used to improve the overall performance seen by
applications. I consider this question in three parts:

e Are there new network services that can improve performance?
e Can ANTS introduce these types of services?

e Does the benefit of using these services outweigh the cost of using ANTS?

That the answer to the first question is “yes” is evidenced by several examples. First,
Shenker recently showed that drop priority within the network could increase the perfor-
mance of layered video applications (as measured by a utility function) beyond what could
be achieved by a purely end-system approach [Bajaj et al., 1998]. An upper bound of around
36% improvement between drop priority and the optimal (and currently unknown) end-to-
end scheme was demonstrated, with gains compared to the current end-to-end approach
(RLM [McCanne et al., 1996]) of around 50%.

Second, many reliable multicast protocols rely on processing within the network to improve
the performance of local error recovery [Papadopoulos et al., 1998, Lehman et al., 1998,
Levine and Garcia-Luna-Aceves, 1997]. For example, ARM results reported in [Lehman et
al., 1998] demonstrate a recovery latency of one round-trip time across a range of group
sizes for which SRM [Floyd et al., 1997] (a widely used end-to-end scheme) recovery latency
is consistently larger by up to a factor of two. The total number of hops that NACK and
repair packets traverse to recover a single loss also grows more slowly than SRM as group
size increases, and differs by roughly a factor of two for moderately sized groups (of 25 or
more members).

Third, the service that delivers timely data such as stock quotes with a specified currency
(described in Chapter 4) extends the range of today’s Web caches. When timely data is
popular, the benefits of network-based caching can be significant even for tight currencies.
Simulations results reported in [Legedza et al., 1998] describe scenarios in which server and
router load is reduced by up to 50% and client latency by 20%.

As a final example, the simple PMTU service presented as an example in Chapter 3 can
improve performance. Without it, discovery is more likely to result in the generation of an
ICMP error message, with the subsequent loss of a data packet and round-trip of delay. Since
the service can be piggybacked on the exchange of other packets, it incurs no additional
cost in terms of either bandwidth or delay. Further, path MTU discovery can occur at
connection setup time when using the service, but would typically occur afterwards without
it (since a large TCP segment size must be negotiated). This means that it can save further
packets.

Note that these examples necessarily ignore the issue of mechanistic complexity. That is,
routers that support more services may be more complex to construct, raising the possibility
of constructing a faster router that supports fewer services. This effect is dependent on many
factors and not readily quantified. I argue that the increased computational resources that
are present in an active network compared to a conventional one do not preclude a useful

132

performance comparison. This is because without an active network there is no clean and
robust way to take advantage of additional resources.

The answer to the second question is also “yes.” Of the services described, two are already
implemented within the toolkit: ARM and the PMTU example. (Note that ARM bears no
relation to the PIM service. ARM adds reliable multicast primitives on top of an unreli-
able multicast foundation, while PIM creates the unreliable multicast foundation.) Of the
remaining two, stock quote caching was described in Chapter 5 and is readily expressible
in terms of the capsule and active node model. Drop priority requires access to congestion
information at a node. It should be straightforward to express, but cannot be implemented
in the ANTS toolkit because of implementation artifacts that prevent congestion loss from
being observed. Aside from this defect, the ANTS programming model is able to introduce
these kind of services without difficulty.

Finally, the answer to the third question is “yes” across a wide range of network topologies
and usage patterns. The overheads of using an ANTS service stem from two sources: capsule
processing and code loading. Both can be small for networks in which a software-based
router implementation is viable and services are popular or sessions are moderately sized.

The measurements presented in this chapter suggest that ANTS nodes can be profitably
deployed in the Internet today without reducing capacity in bandwidth-limited situations,
for example, across wireless, modem, and access links up through T1 speeds. Such nodes
represent an appreciable fraction of the TP routers today (since there are relatively many
low performance nodes and relatively few high performance ones) and those where active
network services are most likely to improve performance.

The analysis of the code distribution system suggests that code groups for new services
can be kept compact, at less than 16 KB. This in turn means that the loss, bandwidth
and latency overheads of loading a network path can be kept low enough that they are not
perceived by applications using the new service. The overall effect of code loading on the
network is also likely to be negligible because useful services will be shared between many
applications. Even with worst case assumptions, many new services can be supported with
minimal overhead when the session size is moderate.

133

134

Chapter 6

Related Work

This chapter compares ANTS with other approaches that provide a means of introducing
new services or otherwise increase the flexibility of the network.

6.1 Configurable Protocol Suites

A number of protocols provide mechanisms for supporting a space of possible processing,
rather than a single fixed point. This capability can be seen to a limited extent in the
IP options [Postel, 1981b], header extensions in IPv6 [Deering and Hinden, 1995], TCP
options [Postel, 1981c], and HTTP extensions'. I refer to them as configurable protocols
rather than programmable protocols, since they support some amount of flexibility but do
not involve the transfer and execution of code.

Some of the more flexible configurable protocol suites are described below. They are relevant
to this research in that they demonstrate the kind of flexibility that can be offered without
requiring an active network, and hence the kind of flexibility that an active network must
improve upon to be worthwhile. In general, they do offer greater flexibility that the existing
Internet, but appear limited in their abilities to introduce new services when compared to
active networks.

6.1.1 The x-kernel

The x-kernel provided a collection of protocol elements (called micro-protocols) along with
a generic mechanism for composing them based on layering [Hutchinson and Peterson,
1991]. It demonstrated that larger protocols, such as remote procedure call (RPC), could
be expressed in terms of many smaller components with the layering model while still
resulting in a high performance implementation [O’Malley and Peterson, 1992].

While the thrust of the system was to explore protocol implementation techniques, it pro-
vided dynamic composition of micro-protocols on a per packet basis. This allowed new

Internet Draft, HTTP Extension Framework for Mandatory and Optional Extensions, H. Frystyk Nielsen,
P. Leach and S. Lawrence, August 1998.

135

protocols to be expressed and introduced. Another feature of interest was the existence of
virtual protocols, which were included or not depending on criteria such as the length of the
message to be sent. In terms of programming language mechanism, the virtual protocols
model “if” statements.

6.1.2 Protocol Boosters

Protocol boosters also leverage the layering model to alter processing within the network
[Feldmeier et al., 1998]. The modularity of a layered protocol organization allows sub-layers
to be inserted between two points in a manner that is transparent to the remainder of the
protocol stack. Protocol boosters use this leeway to adapt processing to local conditions,
thereby improving performance. For example, video transmitted over a lossy link may be
augmented or “boosted” by a forward error correction (FEC) module.

The emphasis of the protocol booster effort is on the performance increases that are attain-
able by adapting network processing to both the application and environment. Little work
has been aimed at understanding how to adapt network processing in a generic manner
(that does not rely on prior knowledge of the topology or application). An ANTS active
network can realize the same gains with a similar pattern of organization, and in addition
provides a programming model for specifying how the network should be adapted.

6.1.3 PIP, SPip and SPIP

Instead of using layering as a composition mechanism, PIP and its variants [Francis, 1993,
Francis and Gondivan, 1994] exploit the flexibility of source routing. Essentially this requires
an expanded packet header and a slightly different forwarding mechanism that tracks the
currently active destination in the list of source routes.

PIP was proposed as a candidate during the design of IPv6 because source routing is able to
provide the semantics of a larger address space by using addresses hierarchically. The same
mechanism is able to support a variety of routing services, including mobility, core-based
trees and provider selection.

Experience with PIP provides at least two useful comments in the context of ANTS. First,
the same source routing strategy can be expressed in the capsule programming model and
so used to implement new services; ANTS can in addition implement network processing,
such as conditional discard, that cannot be expressed in PIP. Second, the assumption that
the DNS provides information on not only the address of a host, but how to reach it, is
implicit in the design of PIP [Francis, 1994]. This observation can be applied to ANTS in the
sense that DNS information about what service to use to contact a host would be valuable
for service introduction.

6.2 Programmable Networks

Several programmable network efforts, described below, allow the behavior of the network
to be upgraded to some extent. These systems are typically intended for use by network

136

administrators or third party developers, and the flexibility they provide tends to be used
in a relatively static manner that does not depend on mobile code.

6.2.1 Programmable Routers

Increasingly, network devices such as firewalls, routers and remote access servers are be-
coming programmable. Several systems illustrate this trend:

e Cisco’s TIOS (Internet Operating System) standardizes the developer API and fea-
ture set of their routers, and so provides the basis for software releases that include

intelligent network services?.

e Microsoft’s Routing and Remote Access (RRAS) Service? allows third parties to de-
velop internetworking products using Windows NT servers.

e NetBoost recently announced a programmable network application engine* with an
open API and hardware support for packet processing operations. It is intended to
allow third parties to develop network services such as virus scanning.

Compared with ANTS, these products provide pointwise service upgrades, but are not ef-
fective at managing services over a region of the network. One interesting aspect is the
decomposition of packet processing tasks into hardware and software, since the systems
demonstrate different levels of programmability and performance that are practical for dif-
ferent purposes.

6.2.2 Open Signaling

In the telecommunications community, the Advanced Intelligent Network (AIN) has enabled
the relatively rapid introduction of value-added services, such as 1-800 numbers and call
forwarding, by standardizing interfaces to switches and other network equipment. Research
in the Open Signaling community is aimed at pushing further in this direction by stan-
dardizing a programmable interface to the network control plane. For example, see “The
Tempest” [van der Merwe et al., 1998].

These architectures are specialized to telecommunications tasks, in which there is a strong
separation between signaling and data transfer tasks, and it is not clear how to best apply
them to the concept of an active network based on the Internet architecture.

6.3 Active Networks

There are a significant number of recent or ongoing research efforts that are exploring
active network approaches. Here, I describe those relevant to network architecture, rather

2See http://www.cisco.com/warp/public/732/ for product information.
3 Routing and Remote Access Service for Windows NT Server, MSDN Online Library
*A New Breed, White Paper, http://www.netboost.com

137

than those that explore applications or technologies to aid in the construction of an active
network.

For the most part, these projects demonstrate different approaches than ANTS, with different
strengths and weaknesses. ANTS is one of the more aggressive of these systems in that it
targets a relatively wide range of applications.

I have organized the projects in roughly chronological order, beginning with two projects
the pre-date that active network approach but are clearly similar in spirit.

6.3.1 Softnet

The seminal programmable network is perhaps Softnet [Zander and Forchheimer, 1983], an
experimental, distributed packet radio network constructed in Sweden in the early 1980s.
The goal of Softnet was to allow users to define their own high level services (such as
datagrams, virtual calls, file transfers and mailboxes) as well as to allow changes at the lower
level of link access protocols. Nodes of the network were dual processor (6809) systems,
with one processor dedicated to the link, and the other to user tasks. Packets in Softnet
are considered to be programs of a network language. They are written in a multi-threaded
dialect of FORTH, and are interpreted at nodes as soon as they arrive. Each packet is
run concurrently in a separate thread to prevent unwanted interactions between users. A
standard set of functions allows control of the node hardware, allowing packets to retransmit
themselves to other nodes, store programs in remote nodes, and synchronize with other
packets.

In terms of this work, Softnet is an intriguing example of a real programmable network, and
one with an architecture that is quite similar to the capsule approach. Softnet inspired a
user community and workshops, but unfortunately fell into disuse with little known about its
successes, failures and lessons for future programmable networks. It is tempting to speculate
that it was not more widely adopted because of difficulties with safety and efficiency (given
the state of active technologies in the early 1980s) and with reliability (given the many
engineering guidelines such as the end-to-end argument that have since emerged).

6.3.2 Messengers

The messenger paradigm for communication [Tschudin, 1993] replaces the exchange of pack-
ets that are interpreted according to a fixed protocol with the exchange of messages that
instruct the receiving host how to proceed. The intent is to investigate an alternative
structuring of communicating systems such as networking protocols, distributed operating
systems, and intelligent agents.

In a prototype system, messengers are written in a postscript-like language called m0 (devel-
oped for the purpose) and passed across unreliable channels (framed by Ethernet or UDP)
[Tschudin, 1994]. On reception, messengers are interpreted to determine not only their
immediate processing, but also the continuing actions that constitute the remote portion
of a protocol. Each messenger is interpreted concurrently in a separate thread. It is run
in a standard environment with operators to access shared dictionaries, send new messen-
gers or create local processes, and synchronize with other messengers (via a process queue

138

abstraction).

As with Softnet, the messenger system is similar to the capsule approach. It demonstrates
that communications protocols can be successfully structured as migrating computations
by implementing a sliding window protocol. Further, it shows that with care the resulting
programs can be compact enough to be transferred as datagrams. For example, a network
discovery program is given in a terse 200 bytes. Unlike the system proposed here, per-
formance was not a goal of the prototype system, and so the impact of messenger-style
protocol implementations on overall application performance is not known. The overhead
of code distribution is also unknown, though provision is made to refer to other programs
installed at hosts rather than to always carry complete programs.

6.3.3 ACTIVE IP

The ACTIVE IP system was a proof-of-concept active network intended mainly for network
probing and discovery tasks. It allowed network users to tag their IP packets with fragments
of Tcl code. This code was carried by using the existing IP options mechanism. In this
manner, packet processing at enabled nodes was customized in terms of a set of available
primitives. The system was implemented by extending and embedding a Tcl interpreter in
the IP layer of the Linux operating system kernel. Further details can be found in [Wetherall
and Tennenhouse, 1996).

As a predecessor to ANTS, ACTIVE [P demonstrated the feasibility of an active network for a
restricted case. It showed that interesting and useful programs (such as the existing options
tasks and network discovery programs) could be composed from a relatively small set of
node primitives. It showed that these programs could be compactly expressed, such that it
is reasonable to transfer them along with packet data.

6.3.4 Switchware and PLAN

At the University of Pennsylvania and Bellcore, the Switchware project [Alexander et al.,
1998] is developing a programmable switch approach that allows digitally signed type-
checked modules to be loaded into a network node. Out-of-band program loading is used
to support value-added services, such as network striping. This approach builds on the
Advanced Intelligent Network (AIN) concept of the telecommunications industry, in which
the implementation of value added services is separated from that of switching by moving the
service control functions to adjunct processors. In Switchware, formal methods are applied
to assure the security of the network; one goal is the identification of security properties
of the underlying infrastructure for which theorems can be proved. A prototype “active
bridge” demonstrates how network elements can be upgraded on-the-fly [Alexander et al.,
1997].

A complementary part of the effort is the development of PLAN [Hicks et al., 1998], a
programming language for active networks. PLAN is intended to be compact, so that small
forwarding programs can be carried directly in each packet. These programs can refer to
node resident code for privileged operations or common-case processing that is too large
to carry directly. PLAN is also designed to facilitate the safe operation of the network.

139

Because the language is restricted, certain program forms, such as those that loop forever
(either locally or across nodes) cannot be expressed.

6.3.5 Netscript

The Netscript project [Yemini and da Silva, 1996] at Columbia University is focusing on
network management. It is designed to support new routing, packet analysis, signaling
and management tasks. Netscript consists of a dataflow style programming language for
scripting agents that process packet streams, along with a Virtual Network Engine, or
execution environment within which agents are run at nodes. An overall program may
consist of many agents that are distributed across nodes. Nodes themselves are connected
via the underlying physical network by an overlay of Virtual Links. The system allows new
agents to be dynamically deployed and configured using a delegation model. The goal is
to enable the programming of remote nodes, including intermediate systems, as easily and
quickly as end-systems.

Compared with ANTS, the Netscript approach is aimed at network managers rather than
users, and hence the establishment of more heavyweight network processing configurations.

6.3.6 SmartPackets and Sprocket

At BBN, the SmartPackets project® has also applied active network techniques to network
management tasks, but for signaling and control rather than to introduce new functional-
ity. SmartPackets carry short programs written in a specially-designed RISC-like language,
Sprocket, that is compact and targeted at network management tasks. For example, MIB
names are represented compactly. These programs are then authenticated and interpreted
at each router they encounter to carry out SNMP-like management tasks. The basis for
organizing the system in this way is the same as that of programmable RPC: that perfor-
mance increases stem from the collapse of multiple round-trip queries into a single program
execution at each node.

6.3.7 Active Services

The active (distributed) services approach is based on the availability of programmable
end-systems within the network infrastructure [Govindan et al., 1998]. These end-systems
can then be organized into service-specific overlays. Amir provides an example of an active
service framework, AS1, targeted at media processing tasks such as transcoding [Amir et
al., 1998].

One of the main motivations of active services is to provide active network-like functionality
without requiring modifications to routers. As part of the design of ANTS, I have argued
that the distinction between end-systems and routers is not substantial in this context.
Instead, the significant design constraints (common to both ANTS and active services) are
that programmable nodes exist within the network infrastructure (and so are in a strategic

SSmart Packets for Active Networks, B. Schwartz et al., January 1998. From http://www.net-
tech.bbn.com/smtpkts/smart.ps.gz.

140

location to support new services) but that not all nodes need be programmable (and so
there is no performance penalty imposed on all routers).

A more substantial issue raised by active services is how to accommodate computationally-
intensive processing, such as video transcoding and Web caching, within the network in-
frastructure. A reasonable view is that tasks fall into at least two domains: lightweight
processing akin to ANTS forwarding routines; and heavyweight processing akin to AS1 data
manipulations. Support for both domains is required and can work in synergy with each
other. This view is supported by the exploration of services such as Web caching and the
evaluation of the ANTS architecture. ANTS services act as the network “glue” that knits
together processing that occurs at programmable end-systems into a useful overall pattern,
and programmable end-systems extend the range of tasks that can be accomplished with
ANTS services.

141

142

Chapter 7

Conclusions

In this dissertation I have: presented a detailed design of the ANTS active network architec-
ture; described a Java-based implementation called the ANTS toolkit; demonstrated how the
toolkit can be used to introduce new services; and evaluated the architecture by comparing
it with the characteristics of the Internet.

ANTS is fundamentally different from conventional networks. It is an active network in
which users can introduce new services using the capsule programming model. Capsules
are special packets that combine data with a customized forwarding program. The type
of forwarding is selected by end user software when a capsule is injected into the network.
The corresponding program is transferred along with the data using mobile code techniques
as the capsule passes through the network. It is executed at programmable routers called
active nodes along the forwarding path. This model introduces flexibility at the router
level directly, rather than in terms of an end-system overlay. It allows topology, loss and
load information to be used to construct a variety of new routing, flow setup, congestion
handling, and measurement services. The focus of my research has been to evaluate how
much flexibility this architecture can provide in practice, while at the same time adequately
addressing the performance and security concerns that it raises.

I begin this chapter with the overall conclusions that I draw from this research, follow with
a description of other specific contributions, and close the dissertation with a discussion of
open questions for ongoing research into active networks.

7.1 Conclusions

The main finding of this research is to validate the hypothesis that an active network can
introduce new services rapidly and automatically, and at a reasonable cost compared to a
conventional network. Several observations lead to this conclusion:

e Flexibility. The construction of new services in Chapter 4 and design patterns in
Chapter 5 demonstrate that the capsule and active node model can express a variety
of new and useful services. This is despite the fact that the programming model
is greatly restricted when compared to a general purpose distributed programming
system.

143

e Rapid Deployment. By design, the ANTS includes a code distribution system that
deploys service code automatically. A new service can be developed rapidly, since
only those end-systems that use it plus the trusted authority that certifies it need
agree on the definition. The net result is rapid and automatic service deployment.

e Performance. Measurements of the ANTS toolkit provide evidence that the perfor-
mance overheads of using a newly deployed service are low. Compared to IP, the
additional processing steps required for common case forwarding are modest. Even
the user-level Java prototype has sufficient capacity to be used as an active node
at a number of locations within the network today, namely those at which routers
are attached to wireless links, access links through T1 (1.5 Mbps) rates, and other
bandwidth-limited links.

e Security. An analysis of protection and resource management mechanisms shows that
an ANTS network has security that is comparable to the Internet today. Most threats
can be handled by active nodes locally and without trusting external parties, with the
exception that the global resource usage of a service must be certified at acceptable
by a trusted authority.

More broadly, I conclude that the active network approach shows great promise as a means
of lowering the barriers to innovation, stimulating experimentation, and otherwise hastening
the arrival of new services. It seems inevitable that network equipment and networks as
a whole will become increasingly malleable as rapid adaptation to changing requirements
becomes more and more important. Active networks offer a practical and systematic means
of providing the required flexibility. They have much to offer to the evolution of a large
network such as the Internet that currently evolves in a manner that is greatly constrained
by concerns for incremental deployment and backwards-compatibility.

7.2 Contributions

As well at this overall conclusion, the research presented in this dissertation makes a number
of specific contributions that revolve around the design and evaluation of ANTS:

e The definition of an active network approach that is based on capsules, along with a
specific architecture, ANTS, that embodies this approach.

e An analysis of ANTS architecture in terms of the combined levels of flexibility, perfor-
mance and security that it is able to achieve.

e An understanding of how the capsule programming model can be used to express a
variety of network services.

e A demand pull code distribution protocol that automatically deploys service code
along network paths yet is compatible with performance and security goals.

e A fingerprint-based protection model that efficiently separates the state of different
services within the network in a manner that is equivalent to conventional protocols,
despite the use of untrusted code.

144

e A choice of active node API that allows the capsule programming model to be realized
efficiently as extensible packet forwarding, such that forwarding requires few processing
steps beyond those needed for IP.

The following sections expand on these contributions.

The Active Network Approach

The active network approach and the concept of capsules were first described in [Tennen-
house and Wetherall, 1996]. In this dissertation, I have defined these concepts in full by
presenting ANTS, a concrete active network architecture that is based on capsules. In doing
so, I have refined the notion of a programmable network to suit the evolution of commu-
nication tasks (rather than general-purpose distributed computation) with optimizations
such as code caching and support for a heterogeneous mix of nodes. I have also enumerated
the significant differences between an active network and a conventional one in terms of
network services and their evolution:

e A fixed model of computation rather than a fixed service.
e The use of many special-purpose services rather than one general-purpose service.

e An emphasis on innovation rather than backwards-compatibility.

These differences amount to a new way of thinking about network evolution that has ram-
ifications for the Internet of tomorrow. Two points illustrate this new outlook:

e It is possible to construct services that are tailored to a specific application. This
allows a portion of the application to be “pushed” into the network infrastructure to
gain the performance advantages of code-shipping. Internet protocols do not allow
the use of computation within the network.

e Since the processing capsules can receive within the network is made explicit, network
services evolve in a clean and systematic manner. This contrasts with IP, which is
increasingly treated as a packet format (rather than a protocol definition) in the sense
that any processing that is compatible with its existing operation can be implemented.
This sometimes has surprising results, for example, in the case of NATs!.

Analysis of the ANTS Architecture

To evaluate ANTS, I compared its flexibility, performance and security properties to those
of the Internet. The same framework could be used to assess other active network archi-
tectures. Based on experience constructing new services and measurements of the ANTS
toolkit, I was able to show that ANTS greatly increases the flexibility with which new ser-
vices can be introduced, while adding a modest performance overhead to software-based
routers and raising few additional security concerns.

More important than the point in the design space demonstrated by ANTS, however, is the
set of tradeoffs that were made as part of the design. A key difficulty that an active network

'Internet Draft, Architectural Implications of NATs, T. Hain, November 1998.

145

must tackle is to provide a workable set of tradeoffs that address the tension among com-
peting properties. Individually, each property can be improved by altering the design of the
network architecture: flexibility would be improved by lifting the restrictions that separate
capsule activity within the network; performance would be improved by eliminating active
node capabilities such as the soft-store; and security would be improved by authenticating
each packet against a user at each node. Such design changes would, of course, impact
the other characteristics. By using an evaluation framework that considered all of these
qualities, I was able to expose worthwhile tradeoffs between them.

Programming with Capsules

At the outset of this research, it was unclear whether the capsule model would be able to
express useful services in a manner compatible with the operation of the network layer as
well as other constraints, such as a mix of active and non-active nodes. For example, Par-
tridge claimed that the end-to-end-argument would preclude the use of the active network
approach at the IP layer [Partridge et al., 1998]. This dissertation has shown that claim to
be untrue.

The multicast, Web caching and path MTU discovery services provide examples of capsule
programs that are compatible with: packet loss, loss of data kept in the soft-store, code size
limits, segmented application data, limited processing time, node and link failures, changes
in network paths, and other constraints imposed by the network layer. The programming
guidelines and design patterns describe network service constructs and program forms that
avoid design pitfalls. They demonstrate how to express a variety of custom routing, inter-
cept, and merge services. This contribution is relevant to any capsule-based active network.

Experimentation with services has also helped to clarify the role of network-resident pro-
cessing. Services in an active network can be application-specific, that is, they can be
considered part of the application that is running within the shared network infrastruc-
ture. To design applications in this manner, a useful view is that of network processing
as an optimization of end-to-end processing. This is compatible with reliability concerns
and partial deployment. For example, in an online auction service, Legedza delegated bid
rejection processing — but not bid acceptance processing — to network nodes [Wetherall
et al., 1998]. Bid rejection within the network is an optimization because if it does not
occur within the network then it can be handled at the edge of the network. On the other
hand, bid acceptance cannot be modeled as an optimization because if it occurs within the
network it must be reliably signaled to the edge of the network.

Demand Pull Code Distribution

ANTS includes a code distribution system that automatically transfers forwarding routines
to nodes of the network as they are needed and along the path that the capsule follows.
This kind of deployment makes it easy to use a new service, and is fundamentally different
than that of the Internet.

In the Internet, router upgrades on all but the smallest scale are effectively constrained to
occur pointwise and in a backwardly-compatible fashion. This is because the functionality

146

is deployed manually, and the period of overlap between old and new can be consider-
able. In contrast, by using mobile code and automatic deployment mechanisms, ANTS is
able to rapidly deploy a new service across the wide area without concern for backwards-
compatibility.

The design of the demand pull protocol is also compatible with performance and security
goals. Given services that are amenable to caching and service code that is not large in
terms of the packet size, code distribution requires little bandwidth and adds a delay that
is on the order of transit time variations measured in the Internet today. The fingerprint-
based capsule types and the incremental nature of the load path prevent code spoofing and
provide a basis for localizing denial-of-service attacks.

Fingerprint-Based Protection

ANTS provides a novel protection model that separates the behavior of services within
the network. This model balances the concerns of efficiency and security. Consider the
alternatives. On one hand, it is possible to design an active network without a protection
mechanism by making the network programmer responsible for service separation. This
adds no runtime overhead to implement, but guarantees no isolation since it relies on the co-
operation of network programmers. On the other hand, it is possible to use authentication
techniques to separate the state of different users. This prevents one user from interfering
with another, but is expensive to implement compared to IP forwarding since it requires a
cryptographic operation for every packet.

Instead, ANTS leverages the fingerprint-based capsule types for protection. By using these
types as service names, and assuming the fingerprint function is one-way, the state of dif-
ferent services is guaranteed to be separated. This mechanism is inexpensive to implement,
since most of the work (the verification of code against fingerprint) is performed at code
load-time rather than capsule run-time. Compared with the extremes above, this mecha-
nism is able to provide both a reasonable protection model (per service rather than per user
separation) and an efficient implementation (load-time rather than run-time work).

Node API and Extensible Packet Forwarding

In ANTS, the categories of node API calls are chosen to limit the impact of new services on
active node processing, while allowing as many services to be expressed as possible. The
result is that the capsule programming model can be realized efficiently as a simple exten-
sible packet forwarding engine: capsules are demultiplexed to their handler, the handler is
run, and the process repeats with the next capsule.

With the capsule model, the main source of processing over and above that required of
an IP router is likely to stem from calls to the node API: code distribution costs can be
amortized over a large number of capsules; service routines themselves are expected to
consist mainly of programming language “glue” that connects calls to the node API; safe
execution techniques add modest overhead; and other per packet and periodic tasks are
inexpensive. The node APT must therefore be designed carefully.

The selection of calls available in ANTS is based on experience constructing and using new

147

services with a prior system [Wetherall and Tennenhouse, 1996] and early versions of the
toolkit. The current set of calls is weaker than I originally anticipated but still able to form
the basis of many useful services.

All node API operations are lightweight in that they run to completion locally, without
requiring external information or resources and without blocking due to resource contention.
For example, a major design simplification is the use of a soft (rather than persistent)
store at nodes. I argue that this does not complicate service design because the need to
accommodate partial node and link failures and changing routes naturally extends to soft-
state. Further, the node API contains no timer functions, as might be useful for periodic
activity such as refreshing routing data. Instead, it proved possible to use capsule events
delivered from outside the network layer as a “clock,” resulting in a simpler node model
that supports approximately the same kind of services. Similarly, no capsule rendezvous
primitives are provided, since packet events coupled with the ability to place capsules in
the soft-store allow many of the same services to be expressed.

7.3 Open Questions

As one of the first theses in the area of active networks, this work opens a line of inquiry.
The discussion below outlines some of the problems that must be tackled in order to make
programmable networks a reality. I focus on open research issues that must be resolved,
rather than the practical steps that are necessary to deploy a large-scale active network in
the Internet.

Managing Resources Across Nodes

The design of the ANTS architecture provides a basis for securing the resources at a single
active node against each execution of untrusted service code. The management of resources
across many nodes, however, is not secured in this manner. I have provided a qualitative
argument that per capsule resource limits accomplish little more than to ensure that infinite
loops are broken. Global resource management in ANTS is thus ultimately controlled through
the certification of services by a trusted authority, abstracted as a node security policy. This
is roughly equivalent to IETF-based standardization today (except that an implementation
is approved, rather than a specification). Like standardization, it suffers from the drawbacks
of vulnerability to accidental errors and centralized authorities.

A more powerful model would be to automatically ensure that an untrusted service makes
use of global resources in a reasonable way. This is a difficult task. I have begun it by
postulating a definition of “reasonable” in which capsule activity is not localized in any
region of the network. That is, one capsule can visit each node no more than k times,
assuming there are no loops in the standard routing tables, and where k£ is a small number
such as one or two. I refer to protocols that satisfy this definition for some value of k£ as
k — bound. This definition readily allows multicast services and accommodates Internet
protocols, but disallows loops and flooding behavior such as ICMP smurf attacks.

Further research is needed on how to check whether new services satisfy this definition.
I suggest that it may be practical to statically check the form of service programs to see

148

that they are safe. For example, routines that forward to a fixed address and do not send
more than one capsule are clearly 1 — bound, and this program form can easily be recog-
nized. Though it may sound restrictive, this form can express selective discard, congestion
notification and network merging services.

Application Autonomy with Network Transparency

The authors of the end-to-end argument suggest in their commentary on the end-to-end
argument in light of active networks [Reed et al., 1998] that the argument implies two
complementary goals:

e application autonomy: higher layers, more specific to an application, are expected
to organize lower-level network resources to achieve application-specific design goals
efficiently.

e network transparency: lower layers, which support many independent applications,
should provide only resources of broad utility across applications, while providing to
applications a usable means for effective sharing of resources and resolution of resource
conflicts.

Clearly, an active network increases application autonomy, since applications can control the
processing performed within the network on their behalf. Reed, Saltzer and Clark raise the
concern that, if not well designed, an active network may decrease network transparency,
since services may interfere with each other in ways that are not readily predictable.

Central to the ability to program network services is the ability to model in a simple manner
the expected network response to the new service. This allows a new service to be designed
without being dependent on the other services that are running simultaneously with it in
the network infrastructure.

The main respect in which the ANTS architecture does not facilitate a simple model com-
pared to the Internet is the soft-store. Loss of soft-state can have a significant effect on
the performance of some services, for example, it can prevent capsules from reaching their
destination. The current soft-store does not facilitate a simple model, since the information
used by one service is affected by the unknown loads of other services, and so it is difficult
to determine when to refresh soft-state. An interesting approach might be to tie storage
guarantees to the packet rate, for example, one byte per second per packet. This assumes
that services that are making greater use of the network (as measured in terms of packets)
deserve a larger share of the soft-store. Unfortunately, since a storage guarantee is only
useful if it persists for a long time compared to the packet rate this model may require
large stores, for example, for routers capable of 10% packets per second, each byte-second of
guarantee requires 1 MB of storage.

An interesting counterpoint to this discussion is bandwidth consumption in the Internet.
Arguably the complexity of congestion control stems from the fact that there is no closed
model for sustainable bandwidth along network paths, thus requiring applications using the
network to adapt. While the same techniques may be useful for adapting to the available
soft-storage at network nodes, a network in which services must adapt to the availability of
multiple resources may be too complicated to be useful.

149

Composition with Protection

As a final issue, there is a tension between the protection of services and their composition.
In the ANTS architecture, a service protection model is provided largely at the expense of
support for service composition.

The ANTS protection mechanism separates the code and state of different protocols. At
the edges of the network, different code groups can be combined into a protocol and then
capsules of that protocol can be sent into the network. This supports code modularity and
reuse. Within the network, however, the state of different protocols is separated, even if the
same code group belongs to both protocols. While the soft-store allows information to be
marked world-readable, this separation prevents different sets of code groups from sharing
state securely inside the network, and effectively prevents the composition of services.

An alternative design might be for the soft-store to support semantics that are closer to
that of a filesystem. By using access control lists, different services could then share state
within the network in whatever pattern is required. This model requires that authentication
capabilities be added to the active node.

150

Bibliography

[Adl-Tabatabai et al., 1996] A. Adl-Tabatabai, G. Langdale, S. Lucco, and R. Wahbe. Ef-
ficient and Language-Independent Mobile Code. In PLDI’96. ACM, May 1996.

[Alexander et al., 1997] D. S. Alexander, M. Shaw, S. Nettles, and J. Smith. Active Bridg-
ing. In SIGCOMM’97, 1997.

[Alexander et al., 1998] D. Scott Alexander, William A. Arbaugh, Michael W. Hicks,
Pankaj Kakkar, Angelos D. Keromytis, Jonathan T. Moore, Carl A. Gunter, Scott M.
Nettles, and Jonathan M. Smith. The SwitchWare Active Network Architecture. IEEE
Network Magazine, 12(3), May/June 1998.

[Amir et al., 1998] E. Amir, S. McCanne, and R. Katz. An Active Service Framework and
its Application to Real-time Multimedia Transcoding. In SIGCOMM’98, Vancouver,
Canada, September 1998. ACM.

[Atkinson, 1995] R. Atkinson. Security Architecture for the Internet Protocol. Request for
Comments 1825, August 1995.

[Bailey et al., 1994] M. L. Bailey, B. Gopal, M. A. Pagels, L. L. Peterson, and P. Sarkar.
Pathfinder: A pattern-based packet classifier. In Proc. of the First Symp. on Operating
System Design and Implementation, pages 243-253, November 1994.

[Bajaj et al., 1998] Sandeep Bajaj, Lee Breslau, and Scott Shenker. Uniform versus Priority
Dropping for Layered Video. In SIGCOMM’98, Vancouver, BC, September 1998.

[Baker, 1995] F. Baker. Requirements for IP Version 4 Routers. Request for Comments
1812, June 1995.

[Balakrishnan et al., 1996] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. H.
Katz. A Comparison of Mechanisms for Improving TCP Performance over Wireless
Links. In SIGCOMM ’96, pages 256-269, Stanford, CA, August 1996. ACM.

[Ballardie et al., 1993] A. Ballardie, P. Francis, and J. Crowcroft. Core based Trees. In
SIGCOMM’93, San Francisco, CA, 1993.

[Bhattacharjee et al., 1996] Samrat Bhattacharjee, Kenneth L. Calvert, and Ellen W. Ze-
gura. On Active Networking and Congestion. Technical Report CIT-CC-96/02, College
of Computing, Georgia Institute of Technology, Spring 1996.

[Bhattacharjee et al., 1998] Samrat Bhattacharjee, Ken Calvert, and Ellen W. Zegura. Self-
Organizing Wide-Area Network Caches. In INFOCOM’98, San Francisco, CA, April 1998.

151

[Braden et al., 1997] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource
ReSerVation Protocol (RSVP) — Version 1 Functional Specification. Request for Com-
ments 2205, September 1997.

[Cejtin et al., 1995] Henry Cejtin, Suresh Jagannathan, and Richard Kelsey. Higher Order
Distributed Objects. Transactions on Programming Languages and Systems, September
1995.

[Chen et al., 1998] J. Chen, P. Druschel, and D. Subramanian. An Efficient Multipath
Forwarding Method. In INFOCOM’98, April 1998.

[Clark and Tennenhouse, 1990] D. D. Clark and D. L. Tennenhouse. Architectural Con-
siderations for a New Generation of Protocols. In SIGCOMM ’90, Philadelphia, PA,
September 1990. ACM.

[Clark, 1988] David D. Clark. The Design Philosophy of the DARPA Internet Protocols.
In SIGCOMM ’88, pages 106-114, Stanford, CA, August 1988. ACM.

onta an eering, . Conta an . Deering. Internet control message protoco

[C d Deering, 1995] A. C d S. Deeri I 1 1
(icmpv6) for the internet protocol version 6 (ipv6). Request for Comments 1885, Decem-
ber 1995.

[CRA, 1997] CRA. Research challenges for the next generation internet. Report from the
Workshop on Research Directions for the Next Generation Internet, May 1997.

[Decasper and Plattner, 1998] Dan Decasper and Bernhard Plattner. DAN: Distributed
Code Caching for Active Networks. In INFOCOM’98, San Francisco, CA, April 1998.

[Deering and Hinden, 1995] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6)
Specification. Request For Comments 1883, December 1995.

[Deering et al., 1994] S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C.-G. Liu, and
L. Wei. An architecture for wide-area multicast routing. In Proceedings of SIGCOMM’94,
1994.

[Deering et al., 1998] S. Deering, D. Estrin, D. Farinacci, A. Helmy, D. Thaler, M. Handley,
V. Jacobson, C. Liu, P. Sharma, and L. Wei. Protocol independent multicast-sparse mode
(pim-sm): Protocol specification. Request For Comments 2362, June 1998.

[Deering, 1989] S. E. Deering. Host Extensions for IP multicasting. Request For Comments
1112, August 1989.

[Deutsch and Grant, 1971] P. Deutsch and C. A. Grant. A Flexible Measurement Tool for
Software Systems. In Information Processing, pages 320-326, 1971.

[Doar and Leslie, 1993] M. Doar and I. Leslie. How Bad is Naive Multicast Routing? In
INFOCOM’93, 1993.

[Dobbertin, 1996] H. Dobbertin. The Status of MD5 After a Recent Attack. RSA Labora-
tories CryptoBytes, 2(2), 1996.

[Egevang and Francis, 1994] K. Egevang and P. Francis. The IP Network Address Trans-
lator (NAT). Request For Comments 1631, May 1994.

152

[Engler and Kaashoek, 1996] Dawson R. Engler and M. Frans Kaashoek. DPF: Fast, Flex-
ible Message Demultiplexing using Dynamic Code Generation. In SIGCOMM ’96, Stan-
ford, CA, August 1996. ACM.

[Feldmeier et al., 1998] D. C. Feldmeier, A. J. McAuley, J. M. Smith, D. S. Bakin, W. S.
Marcus, and T. M. Raleigh. Protocol Boosters. IEEE Journal on Selected Areas of
Communication, 16(3), April 1998.

[Fenner, 1997] W. Fenner. Internet Group Management Protocol, Version 2. Request For
Comments 2236, November 1997.

[Floyd and Jacobson, 1993] S. Floyd and V. Jacobson. Random Early Detection gateways
for Congestion Avoidance. IEEE/ACM Transactions on Networking, 1(4):397-413, Au-
gust 1993.

[Floyd et al., 1997] S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. Zhang. A reliable
multicast framework for light-weight sessions and application level framing. IEEE/ACM
Transactions on Networking, 5(6):784-803, December 1997.

[Floyd, 1994] S. Floyd. TCP and Explicit Congestion Notification. ACM Computer Com-
munications Review, 24(5):10-23, October 1994.

[Francis and Gondivan, 1994] P. Francis and R. Gondivan. Flexible Routing and Address-
ing for a Next Generation IP. In SIGCOMM’9;, London, UK, September 1994.

[Francis, 1993] Paul Francis. A Near-Term Architecture for Deploying PIP. IEEE Network,
7(3):30-37, May 1993.

[Francis, 1994] Paul Francis. Addressing in Internetwork Protocols. PhD thesis, University
College London, September 1994.

[Gong and Schemers, 1998] L. Gong and R. Schemers. Implementing Protection Domains in
the Java Development Kit 1.2. In Internet Society Symposium on Network and Distributed
System Security, pages 125-134, San Diego, CA, March 1998.

(Gong et al., 1997] L. Gong, M. Mueller, H. Prafullchandra, and R. Schemers. Going Be-
yond the Sandbox: An Overview of the New Security Architecture in the Java Develop-

ment Kit 1.2. In Symp. on Internet Technologies and Systems, pages 103-112, Monterey,
CA, December 1997. USENOX.

[Gosling, 1995] J. Gosling. Java Intermediate Bytecodes. In SIGPLAN Workshop on Inter-
mediate Representations (IR95), pages 111-118, San Francisco, CA, January 1995. ACM.
Appears in SIGPLAN Notices, 30, 3 (March 1995).

[Govindan et al., 1998] R. Govindan, C. Alaettinoglu, and D. Estrin. A framework for
active distributed services. Technical Report 98-669, USC, January 1998.

[Hawblitzel et al., 1998] Chris Hawblitzel, Chi-Chao Chang, Grzegorz Czajkowski, Deyu
Hu, and Thorsten von Eicken. Implementing Multiple Protection Domains in Java . In
USENIX’98, New Orleans, LA, June 1998.

[Hedrick, 1988] C. Hedrick. Routing Information Protocol. Request for Comments 1058,
June 1988.

153

[Hicks et al., 1998] Michael Hicks, Pankaj Kakkar, Jonathan T. Moore, Carl A. Gunter,
and Scott Nettles. PLAN: A Packet Language for Active Networks. In International
Conference on Functional Programming (ICFP’98), 1998.

[Holbrook et al., 1995] Hugh Holbrook, Sandeep Singhal, and David Cheriton. Log-Based
Receiver-Reliable Multicast for Distributed Interactive Simulation. In SIGCOMM’95.
ACM, 1995.

[Hsieh et al., 1996] Wilson Hsieh, Marc Fiuczynski, Charles Garrett, Stefan Savage, David
Becker, and Brian Bershad. Language Support for Extensible Operating Systems. In
Workshop on Compiler Support for System Software, February 1996.

[Hutchinson and Peterson, 1991] Norman C. Hutchinson and Larry L. Peterson. The x-
Kernel: An Architecture for Implementing Network Protocols. IEEE Transactions on
Software Engineering, 17(1):64-76, January 1991.

[Jacobson et al., 1992] V. Jacobson, R. Braden, and D. Borman. TCP Extensions for High
Performance. Request for Comments 1323, May 1992.

[Johnson, 1998] E. Johnson. A Protocol for Network Level Caching. M.Eng Thesis, Mas-
sachusetts Institute of Technology, May 1998.

[Kent and Mogul, 1987] C. Kent and J. Mogul. Fragmentation Considered Harmful. In
SIGCOMM 87, Stowe, VT, August 1987. ACM.

[Koprowski, 1998] G. Koprowski. Emerging Uncertainty Over IPv6. IEEE Computer,
31(11), November 1998.

[Lakshman and Stiliadis, 1998] T.V. Lakshman and D. Stiliadis. High-Speed Policy-based
Packet Forwarding Using Efficient Multi-dimensional Range Matching. In SIGCOMM’98,
Vancouver, BC, September 1998.

[Legedza and Guttag, 1998] Ulana Legedza and John Guttag. Using Network-level Support
to Improve Cache Routing. In 3rd International WWW Caching Workshop, Manchester,
UK, June 1998.

[Legedza et al., 1998] Ulana Legedza, David Wetherall, and John Guttag. Improving the
Performance of Distributed Applications Using Active Networks. In INFOCOM ’98,
1998.

[Lehman et al., 1998] Li-Wei Lehman, Stephen Garland, and David Tennenhouse. Active
Reliable Multicast. In INFOCOM’98, 1998.

[Leiner et al., 1997] B. Leiner, V. Cerf, D. Clark, R. Kahn, L. Kleinrock, D. Lynch, J. Pos-
tel, L. Robberts, and S. Wolff. The Past and Future History of the Internet. Communi-
cations of the ACM, 40(2), February 1997.

[Levine and Garcia-Luna-Aceves, 1997] B. N. Levine and J.J. Garcia-Luna-Aceves. Im-
proving internet multicast with routing labels. In IEEFE International Conference on
Network Protocols (ICNP’97), pages 241-50, October 1997.

[Li and Cheriton, 1998] D. Li and D. Cheriton. Oters: Exploiting the routing topology
for high-performance reliable multicast. In IEEE International Conference on Network
Protocols (ICNP’98), October 1998.

154

[Mathis et al., 1996] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP Selective
Acknowledgement Options. Request for Comments 2018, October 1996.

[McCann et al., 1996] J. McCann, S. Deering, and J. Mogul. Path MTU Discovery for IP
version 6. Request for Comments 1981, August 1996.

[McCanne et al., 1996] Steven McCanne, Van Jacobson, and Martin Vetterli. Receiver-
driven Layered Multicast. In SIGCOMM’96, pages 117-130, Stanford, CA, August 1996.

[Mogul and Deering, 1990] J. Mogul and S. Deering. Path MTU Discovery. Request for
Comments 1191, November 1990.

[Necula and Lee, 1996] G. Necula and P. Lee. Safe Kernel Extensions Without Run-Time
Checking. In 2nd Symposium on Operating System Design and Implementation, pages
229-243, Seattle, WA, October 1996. USENIX.

[Necula and Lee, 1998] G. Necula and P. Lee. The Design and Implementation of a Certi-
fying Compiler. In PLDI’98, Montreal, Canada, June 1998. ACM.

[Nygren, 1999] E. Nygren. PAN: A High-Performance Active Network Node Supporting
Multiple Code Systems. In OPENARCH’99, New York, NY, March 1999. IEEE.

[O’Malley and Peterson, 1991] S. O’Malley and L. Peterson. TCP Extensions Considered
Harmful. Request For Comments 1263, October 1991.

[O’Malley and Peterson, 1992] S. W. O’Malley and L. L. Peterson. A dynamic network
architecture. ACM Transactions on Computer Systems, 10(2):110-143, May 1992.

[Papadopoulos et al., 1998] C. Papadopoulos, G. Parulkar, and G. Varghese. An Error
Control Scheme for Large-Scale Multicast Applications. In INFOCOM’98, San Francisco,
CA, April 1998.

[Pardyak and Bershad, 1996] Przemyslaw Pardyak and Brian Bershad. Dynamic Binding
for an Extensible System. In Proc. of the Second USENIX Symposium on Operating
Systems Design and Implementation (OSDI’96), pages 201-212, Seattle, WA, October
1996.

[Partridge et al., 1993] C. Partridge, T. Mendez, and W. Miliken. Host Anycasting Service.
Request For Comments 1546, November 1993.

[Partridge et al., 1998] C. Partridge, T. Strayer, B. Schwartz, and A. Jackson. Commen-
taries on the Active Networking and End-to-End Arguments. IEEE Network Magazine,
12(3):67-69, May/June 1998.

[Partridge, 1992] Craig Partridge. Late-Binding RPC: A Paradigm for Distributed Compu-
tation in a Gigabit Environment. PhD thesis, Harvard University, 1992.

[Paxon, 1997] V. Paxon. End-to-End Internet Packet Dynamics. In SIGCOMM’97, Cannes,
France, September 1997.

[Perkins, 1996] C. Perkins. IP Mobility Support. Request For Comments 2002, October
1996.

[Postel, 1981a) J. Postel. Internet Control Message Protocol. Request For Comments 792,
September 1981.

155

[Postel, 1981b] J. Postel. Internet Protocol. Request For Comments 791, September 1981.

[Postel, 1981c] J. Postel. Transmission Control Protocol. Request For Comments 793,
September 1981.

[Ramakrishnan and Floyd, 1999] K. Ramakrishnan and S. Floyd. A Proposal to add Ex-
plicit Congestion Notification (ECN) to IP. Request For Comments 2481, January 1999
1999.

[Reed et al., 1998] D. P. Reed, J. H. Saltzer, and D. D. Clark. Commentaries on the Ac-
tive Networking and End-to-End Arguments. IEEE Network Magazine, 12(3):69-71,
May /June 1998.

[Rivest, 1992] R. Rivest. The MD5 Message-Digest Algorithm. Request For Comments:
1321, April 1992.

[Robshaw, 1996] M. Robshaw. On Recent Results for MD2, MD4, and MD5. RSA Labora-
tories Bulletin, November 1996.

[Saltzer et al., 1984] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-End Arguments in
System Design. ACM Transactions on Computer Systems, 2(4):277-288, 1984.

[Srinivasan et al., 1998] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel. Fast Scal-
able Algorithms for Level Four Switching. In SIGCOMM’98, Vancouver, BC, September
1998.

[Stamos and Gifford, 1990] James W. Stamos and David K. Gifford. Remote Evaluation.
ACM Transactions on Programming Languages and Systems, 12(4):537-565, October
1990.

[Stevens, 1997] W. Stevens. TCP Slow Start, Congestion Avoidance, Fast Retransmit and
Fast Recovery Algorithms. Request For Comments 2001, January 1997.

[Tennenhouse and Wetherall, 1996] D. L. Tennenhouse and D. Wetherall. Towards an Ac-
tive Network Architecture. In Multimedia Computing and Networking 96, San Jose, CA,
January 1996. A revised version appears in CCR Vol. 26, No. 2 (April 1996).

[Tian and Neufeld, 1998] J. Tian and G. Neufeld. Forwarding State Reduction for Sparse
Mode Multicast Communication. In INFOCOM’98, San Francisco, CA, April 1998.

[Tschudin, 1993] C. Tschudin. On the Structuring of Computer Communications. PhD
thesis, Geneva University, 1993.

[Tschudin, 1994] C. Tschudin. An Introduction to the m0 Messenger Language. Technical
Report Report No. 86, Geneva University, 1994.

[van der Merwe et al., 1998] J. van der Merwe, S. Rooney, and I. Leslie aned S. Crosby.
The Tempest — A Practical Framework for Network Programmability. IEEE Network
Magazine, 12(3), May/June 1998.

[Van, 1997] Van C. Van. A Defense Against Address Spoofing Using Active Networks.
M.Eng Thesis, Massachusetts Institute of Technology, June 1997.

[Wahbe et al., 1993] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L.
Graham. Efficient Software-based Fault Isolation. In 14th Symp. on Operating Systems
Principles, Ashville, NC, December 1993. ACM.

156

[Waitzman et al., 1988] D. Waitzman, C. Partridge, and S. Deeering. Distance Vector Mul-
ticast Routing Protocol. Request For Comments 1075, November 1988.

[Wessels and Claffy, 1998] D. Wessels and K. Claffy. Icp and the squid web cache. IEEE
Journal on Selected Areas of Communications, pages 345-357, April 1998.

[Wetherall and Tennenhouse, 1996] David J. Wetherall and David L. Tennenhouse. The
ACTIVE IP Option. In 7th SIGOPS European Workshop, Connemara, Ireland, Septem-
ber 1996. ACM.

[Wetherall et al., 1998] David Wetherall, John Guttag, and David Tennenhouse. ANTS: A
Toolkit for Building and Dynamically Deploying Network Protocols. In OPENARCH’98,
1998.

[White, 1994] J. E. White. Telescript Technology: The Foundation for the Electronic
Marketplace. General Magic, 1994.

[Yahara et al., 1994] M. Yahara, B. Bershad, C. Maeda, and E. Moss. Efficient Packet
Demultiplexing for Multiple Endpoints and Large Messages. In Proc. of the 1994 Winter
USENIX, 1994.

[Yemini and da Silva, 1996] Y. Yemini and S. da Silva. Towards Programmable Networks.
In FIP/IEEE Intl. Workshop on Distributed Systems Operations and Management, Italy,
October 1996.

[Zander and Forchheimer, 1983] J. Zander and R. Forchheimer. Softnet - An Approach to
High-Level Packet Communication. In ARRL 2nd Computer Networking Conference,
San Francisco, CA, March 1983.

[Zappala et al., 1997] Daniel Zappala, Deborah Estrin, and Scott Shenker. Alternate Path
Routing and Pinning for Interdomain Multicast Routing. Technical Report TR97-655,
CS Dept., University of Southern California, 1997.

[Zhang et al., 1998] Lixia Zhang, Scott Michel, Khoi Nguyen, and Adam Rosenstein. Adap-
tive Web Caching: Towards a New Global Architecture. In 3rd International WWW
Caching Workshop, Manchester, UK, June 1998.

157

