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Abstract
This paper argues that transport protocols such as TCP

provide a rare domain in which protocol extensibility by
untrusted parties is both valuable and practical. TCP
continues to be refined despite more than two decades
of progress, and the difficulties due to deployment de-
lays and backwards-compatibility are well-known. Re-
mote extensibility, by which a host can ship the trans-
port protocol code and dynamically load it on another
node in the network on a per-connection basis, directly
tackles both of these problems. At the same time, the
unicast transport protocol domain is much narrower than
other domains that use mobile code, such as active net-
working, which helps to make extensibility feasible.
The transport level provides a well understood notion of
global safety—TCP friendliness—while local safety can
be guaranteed by isolation of per-protocol state and use
of recent safe-language technologies. We support these
arguments by outlining the design of XTCP, our extensi-
ble TCP framework.

1 Introduction
TCP was designed over two decades ago and has been

evolving ever since. Proposals for changes show no sign
of ceasing, as they are driven by changes in the way
the network is used and the quest for ever better perfor-
mance [22, 11, 18, 13, 6, 15, 12, 30, 31, 21, 24, 46, 2,
20, 27, 29, 39, 42, 8, 10, 3, 1, 37, 45, 32, 36]. Yet the
process of evolution itself is not simple or painless. Ex-
perimentation with a new version of TCP requires that
both communication endpoints be upgraded, in the gen-
eral case. Widespread deployment is needed to unlock
the true value of such extensions, which in practice takes
years, lowering the value for early adopters and posing a
further barrier to change.

These difficulties have resulted in pressure to produce
TCP extensions that require upgrades at a single end-
point, even at the expense of efficiency or robustness.
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For example, both NewReno [18] and SACK [31] im-
prove performance when there are multiple packet losses
in one window of data. NewReno is based on a heuris-
tic interpretation of duplicate acknowledgments, and can
be deployed for immediate benefit. In contrast, SACK
addresses multiple losses by design, has been shown to
provide improved performance, and is generally consid-
ered the better alternative [17]. The catch is that SACK
requires both ends to be upgraded.

An alternative approach is to build remote extensi-
bility mechanisms into TCP itself, so that both end
points can be upgraded at once. This would free pro-
tocol designers from both the constraints of backwards-
compatibility and the deployment barrier. This argument
should sound familiar to many: it is essentially the argu-
ment for active networks, which aims to allow new net-
work services to be introduced using mobile code. Yet
active networking has not seen widespread deployment;
the many reasons include the lack of compelling appli-
cations and the technical difficulties of running user-
defined code within the network. Furthermore, prior
work on extensible operating system services cannot be
readily used in this domain due to its lack of support for
extending a remote operating system with untrusted pro-
tocol code.

In this paper, we put forth the case for XTCP, a re-
motely extensible version of TCP. We argue that the do-
main of TCP extensions provides a sweet spot that is
well-suited to take advantage of the mobile code aspect
of active networking, without incurring the problems that
have hindered active networks. Past and proposed TCP
variations demonstrate a clear need for such extensibil-
ity: we present an analysis of 27 TCP variants and find
that the majority would benefit from remote extensibil-
ity. At the same time, compared to the generality of ac-
tive networks, TCP provides a restricted domain within
which the technical challenges can be successfully tack-
led.

A key challenge in providing this rapid deployment
model is to do so without causing security problems.
Transport protocol code that comes from sources that are
not authoritative—such as the other end of a wide-area
connection—should not be trusted. We must ensure that
such code cannot compromise the integrity of the host



system or consume too many of its resources. Further,
standard practice in the networking community is to re-
quire that new transport protocols compete fairly with
deployed versions of TCP to ensure that they will not
undermine the stability of the network [19]. Thus, to
provide a system that is acceptable in practice we must
provide this form of network safety. Since extensions to
TCP are often undertaken to improve performance, we
must also allow new transport extensions to be compet-
itive in performance with hard-coded and manually de-
ployed versions.

Our design makes automatic deployment practical by
exploiting TCP’s connection phase for in-band signal-
ing of protocol requirements, deferring code distribution
to user-mode daemons so that later connections bene-
fit. We use the concept of TCP-friendliness to provide
a clear model of network safety, and the recent ECN
nonce mechanism [16] to enforce TCP-friendliness with-
out trusting local TCP extensions or any remote parties.
To obtain host safety with reasonable impact on perfor-
mance and the structure of traditional kernels, we ex-
ploit TCP’s stylized memory allocation and its limited
sharing between connections, use a C-like type-safe lan-
guage [25], and enforce resource limitations. We have
focused on TCP to date for concreteness, but expect
much of our reasoning to apply to other transports such
as DCCP [27] and SCTP [42].

The rest of this paper is organized as follows. In sec-
tion 2, we develop the case in favor of remote extensibil-
ity at the transport layer, while in section 3 we show that
such extensibility is achievable by presenting the design
of the XTCP framework. In section 4, we conclude the
paper with a discussion of the key issues for our future
research.

2 The Case for XTCP

2.1 XTCP is Useful
We envision the following scenarios for using XTCP:

1. A “high performance” TCP is installed along with
a Web server, and code is pushed to receivers to
provide more rapid downloads. Figure 1 illustrates
this example scenario using the XTCP extensibility
model discussed in section 3.1.

2. A mobile client installs “TCP connection migra-
tion” [40] and ships code to the server to allow itself
to move.

3. A user installs “TCP nice” [44] to provide back-
ground data transfers. No remote code shipping is
needed.

To demonstrate that such extensibility is useful, we
surveyed TCP extensions and TCP-friendly transports

that have been deployed or proposed since congestion
control was first introduced in 1988 in TCP Tahoe [22].
We analyzed 27 TCP extensions and classified them into
three categories according to which endpoints must be
upgraded to gain a benefit, assuming TCP Tahoe as the
baseline implementation. The results are shown in Ta-
ble 1.

We found that the 16 extensions listed in Category 1
require upgrades to both sender and receiver sides to be
of value. For some of these extensions, such as TCP con-
nection migration, it is very hard, if not impossible, to
gain the benefits by modifying only one endpoint. XTCP

provides a clear benefit for these extensions, allowing
them to be readily deployed where they otherwise could
not.

The five extensions listed in Category 2 can be imple-
mented by upgrading a single endpoint and XTCP would
not seem to benefit them directly. However, all of these
designs have the potential to become either more robust
or effective if both ends can be upgraded and the new
functionality split freely between the sender and the re-
ceiver. For example, NewReno could become SACK,
and TCP Vegas [11] could use receiver timings to more
accurately estimate queuing delay [34]. That is, these
extensions are constrained to some extent by the pres-
sure of backwards-compatibility; XTCP would alleviate
this pressure.

Finally, the remaining six extensions in Category 3 re-
quire changes to only one endpoint. For example, both
the fast recovery modification to the sender-side TCP and
TCP-Nice are transparent to the receiver. For these pro-
tocols, XTCP can still provide a useful kernel upgrade
mechanism by allowing third-party software authors to
write and remotely install TCP extensions.

In summary, the majority of the extensions that we
studied benefit from the XTCP model of remote exten-
sibility, and many would be difficult to deploy without
it.

2.2 XTCP is Practical
The second issue we consider is technical feasibility,

since XTCP requires the use of mobile code and is sim-
ilar in spirit to the challenging domain of active net-
works [43]. The key insight and difference between
XTCP and active networks is that TCP (or more generally,
unicast transport protocols) is a much narrower domain
in which to provide extensibility. This enables several
key simplifications that increase our confidence in being
able to build an effective solution.

First, XTCP provides extensibility at a much coarser
granularity than active networks: per connection at end-
points rather than per packet at routers. This permits
a simpler approach to upgrades, where extensions are
signaled in-band, at connection setup time, and code is



Category Extensions
1. Require both
endpoints to
change

1. Connection migration: Migrating live TCP connections [40], 2. SACK: Selective acks [31], 3. D-
SACK: Duplicate SACK [21], 4. FACK: Forward acks [30], 5. RFC 1323: TCP extensions for high-speed
networks [24], 6. TCPSAT: TCP for satellite networks [4], 7. ECN: Explicit congestion notification [35],
8. ECN nonce: Detects masking of ECN signals by the receiver or network [16], 9. RR-TCP: Robustly
handles packet reodering [46], 10. WTCP: TCP for wireless WANs [36], 11. The Eifel algorithm:
Detection of spurious retransmissions [29], 12. T/TCP: TCP for transactions [10], 13. TFRC: Equation-
based TCP-friendly congestion control [20], 14. DCCP: New transport protocol with pluggable congestion
control [27], 15. SCTP: Transport protocol support for multi-homing, multiple streams etc., between
endpoints [42], 16. RAP: Rate adaptive TCP-friendly congestion control [37]

2. Could bene-
fit more if both
endpoints could
change

1. NewReno: Approximation of SACK from sender side [18] 2. TCP Vegas: A measurement-based
adaptive congestion control [11], 3. TCP Westwood: Congestion control using end-to-end rate estima-
tion [45], 4. Karn/Partridge algorithm: Retransmission backoff and avoids spurious RTO estimates due
to retransmission ambiguity [26], 5. Congestion manager: A generic congestion control layer [7]

3. Require only
one endpoint to
change

1. Header prediction: Common case optimization on input path [23], 2. Fast recovery: Faster recovery
from losses [41], 3. Syn-cookies: Protection against SYN-attacks [8], 4. Limited transmit: Performance
enhancement for lossy networks [2], 5. Appropriate byte-counting: Counting bytes instead of segments
for congestion control [1], 6. TCP nice: TCP for background transfers [44]

Table 1: Classification of TCP extensions, assuming TCP Tahoe [22] as the baseline version.

transferred in the background.
Second, there exists a clear model of “global” or

network safety for XTCP: a connection should not be
able to send faster than a TCP-friendly transport. In
fully general active networks, there is no clear limit to
the network-wide resources that can be expended on
a packet, and even if there were, multiple extensible
routers would need to cooperate to enforce the limit. Fur-
thermore, recent advances in network safety mechanisms
allow enforcement of a rate-limiting model. Compliance
can be checked by the local XTCP using a variant of the
ECN nonce mechanism, without trusting either extension
code or remote hosts.

Third, even in terms of local safety—protecting the re-
sources of the local host—XTCP affords simplifications
compared to active networks. There is limited sharing
between TCP connections in the kernel, which translates
into simpler protection models and eases the task of ter-
mination, should code need to be unloaded for any rea-
son. Recent advances in safe language technology also
contribute to XTCP’s practicality. Our design leverages
Cyclone [25], a type-safe variant of C, to obtain host pro-
tection while providing relatively straightforward reuse
of existing C-based transport protocols, familiarity to
system programmers, and acceptable performance.

A fourth simplification is that XTCP can leverage a
large body of past TCP extensions upon which to base its
extension API. Active networks, on the other hand, had
no such agreed set of applications and hence it tended to-
wards generality. In contrast, XTCP aims to do one thing,
and to do it well.

3 Design
The basic approach of XTCP is to download trans-

port extensions directly into the operating system kernel.
To guarantee safety, XTCP uses type-safety to achieve
memory protection and restricts extensions to a resource-
safe API, called the XTCP API, summarized in Table 2.
Extensions are invoked in response to specific system
events, such as packet input/output and timers, and are al-
lowed to read and write IP datagrams. To ensure network
safety, trusted XTCP network access functions attach IP
headers to outgoing datagrams and limit the sending rate
of a transport to that of a TCP-friendly transport. Exten-
sions are allowed to register timers, manipulate packet
buffers, and interact with the sockets layer in a safe man-
ner. This functionality is sufficient to implement a range
of transport protocols, including conventional TCP. In
this section, we focus on three key aspects of XTCP’s de-
sign: connection setup and code distribution, network
safety, and host safety.

3.1 Connection Setup and Code Distribution
Before a transport extension can be used, the code

must be distributed to both connection endpoints. XTCP

accomplishes this by interposing on normal TCP con-
nection setup, as shown in Figure 1. Suppose host A
wants to communicate with host B using a transport ex-
tension. Host A’s first packet (either a SYN or a SYN-
ACK) includes a special TCP option, which includes a
hash of the desired transport extension’s code. If host B
has already loaded the extension, the current connection
is established using the requested protocol. If B has not
loaded the extension, it issues a request to A for the new



The XTCP API Categories
1. Protocol management
xtcp load proto(proto sw)
xtcp unload proto(proto handle)
2. Sockets layer
xtcp sowakeup(socket)
xtcp sbapppend(socket, seg)
xtcp isdisconnecting(socket)
xtcp sobind(socket)
3. Connection management callback functions
xtcp attach(socket)
xtcp connect(socket, remote-endpoint, state)
xtcp abort(socket)
xtcp accept(socket, remote-endpoint, state)
4. TCP-friendly network access
xtcp ack(end seqno, nonce)
xtcp ack sum(end seqno, noncesum)
xtcp nack(seqno)
xtcp net sendack(segment)
xtcp net send(segment, seqno)
xtcp net resend(segment, new seqno, old seqno)
5. Runtime support
xtcp gettick()
xtcp seg alloc(proto handle)
xtcp timer reset(proto handle, callout)
xtcp get rtentry(proto handle, dst ip addr)

Table 2: The initial XTCP API exports a set of 67 functions.
The major groups and sample functions are listed.

protocol code, while using the default TCP to establish
the current connection.

Asynchronously “at leisure,” a user-level daemon on
A transfers the code to B’s daemon (connection 2 in the
figure). B either compiles source code, requests a trusted
server to do so, or verifies the authenticity of object code,
loads it into the kernel, and makes it available for subse-
quent network connections. This signaling and code dis-
tribution scheme only benefits later connections—often
substantially later, since the entire process could take
many seconds or perhaps even minutes, since it must be
done at low priority to mitigate DoS attacks. Its effec-
tiveness relies on the pattern of TCP connections com-
mon in today’s Internet, in which hosts make repeated
TCP connections to a particular peer.

This connection setup procedure has several features
we believe are important to practical deployment. It is
fully backwards-compatible with conventional TCP, im-
poses minimal control latency on the connection that
is used to bootstrap a new extension, minimally in-
vades the kernel software architecture, and retains TCP’s
three-way packet exchange for compatibility with exist-
ing level 4 “middleboxes” like firewalls, NAT boxes, and
other proxies.
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Figure 1: An example scenario. In connection 1, server A re-
quests use of high-performance TCP (TCP-HP), causing client
B to ask for the code. At application level in connection 2,
server A sends it to client B. In a later, unrelated connection 3,
A and B use TCP-HP.

Our current design provides extensibility at the gran-
ularity of an entire TCP implementation. This coarse-
grained design provides complete flexibility and is prac-
tical in most domains: our measurements show that a full
TCP implementation, with comments and headers, takes
85K bytes of compressed source code; Cyclone source
code should not expand it at all [25]. If certified object
code is transferred instead of source, its size is smaller.
We measured 20K of x86 object code, which Cyclone
should expand by at most 20%. We have partially de-
signed a fine-grained extensibility model, but are cur-
rently pursuing the coarse model.

We have not discussed the multitude of potential pol-
icy issues regarding which extensions to invoke or ac-
cept from peers. Briefly, our design uses three sources to
select extensions: application-provided socket options,
host-wide configuration options, and the code distribu-
tion and policy server that communicates with other
such servers. The policy servers might “rate” proto-
cols [38], could form a web of (partial) trust, and in fact
could represent the beginnings of an Internet “knowledge
plane” [14]. However, we believe only the simplest poli-
cies need be implemented for our design to function well.

3.2 Network Safety
The network safety goal of XTCP is to require new

transport protocols to compete fairly with deployed
versions of TCP to ensure that they will not under-
mine the stability of the network, as recommended in
RFC 2914 [19]. Currently, XTCP achieves this by lim-
iting extensions to a TCP-friendly sending rate, as mod-
eled by the TCP rate equation [33]. This equation gives
an upper bound on allowable sending rate of a TCP-
friendly flow in terms of packet size, loss event rate and
round trip time.



XTCP must compute values of these parameters with-
out trusting the local transport or remote endpoint. This
is essential to prevent new transports from compromising
the rate-checking mechanism by indirectly inflating the
allowable sending rate. For this purpose, XTCP adapts
the recently proposed ECN nonce mechanism [16].

The ECN nonce mechanism is based on placing a ran-
dom one-bit value in the IP header of outgoing packets.
The nonce bit (or a sum of nonce bits over many packets)
is later used as a proof of acknowledgment. The exten-
sions must inform XTCP of packet arrival and loss events
in terms of per-packet sequence numbers; these numbers
appear as an extra argument to the network send func-
tion. Upon receiving an acknowledgment, the extension
reports the sequence number and nonce, using one of
the acknowledgment functions shown in Table 2. Packet
drops are indicated by using negative-acknowledgment
functions; also, XTCP assumes that a packet has been lost
if the nonce is incorrect or a timeout period has expired.
This information is sufficient for XTCP to estimate the
packet size, loss event rate, and round trip time parame-
ters needed by the TCP rate equation.

A crucial feature of the above mechanism is that XTCP

remains independent of transport header formats, permit-
ting arbitrary header modifications by new extensions.

3.3 Host Safety
Host safety in the face of untrusted code is achieved

through principles of isolation and resource control sim-
ilar to those used in safe language-based operating sys-
tems, such as KaffeOS [5], but simplified by the con-
strained memory allocation and sharing behavior of TCP.
Memory safety is achieved by using Cyclone, a type-safe
dialect of C [25]. The type-safety of Cyclone prevents
memory corruption, and its compatibility with C makes it
easier and more efficient to interface with traditional ker-
nels than other safe languages, such as Java or OCaml.

Extensions are never allowed to share memory with
other extensions, grab system locks, or disable inter-
rupts. Therefore, asynchronous termination can be safely
achieved by terminating all connections of a misbehav-
ing extension. This tractable notion of termination allows
us to use traditional run-time techniques to bound mem-
ory usage and inexpensive timer interrupt-based check-
ing to bound CPU usage.

4 Open Issues and Conclusion
In this paper, we have argued that TCP, and more gen-

erally unicast transport protocols, present a unique do-
main in which remote extensibility by untrusted parties
is both valuable for users and technically feasible. We
presented the design of XTCP, our framework for achiev-
ing this extensibility. We have implemented a proto-

type of XTCP in the FreeBSD kernel and ported TCP
NewReno [18] and TCP SACK [31] to it. Our initial
experience with XTCP’s performance, safety characteris-
tics, and ease of porting existing protocols has been en-
couraging.

There are several open issues that we expect to tackle
as we gain experience with the system. First, we are us-
ing the TCP-friendly rate equation to provide network
safety. This equation governs the steady-state transfer
rate as a function of loss, and to date it has mostly been
used to build other transports such as TFRC. We use it
online to police TCP extensions. This means we must de-
termine appropriate timescales on which to apply it. The
timescales must be long enough to avoid false alarms, but
short enough to prevent abusive transports from crowd-
ing out compliant transports.

Second, a key issue is whether our XTCP API will
prove sufficient to support a wide variety of TCP exten-
sions, including those currently unimagined. The need
to repeatedly revise the XTCP API would defeat its pur-
pose. We believe that our static API in conjunction with
mobile code will prove sufficiently general because it ful-
fills a key need of extensions: the ability to change packet
formats, allowing the sender and receiver to exchange
new information. Our current API directly supports 18
of the 21 extensions listed in Categories 1 and 2 in ta-
ble 1. Three extensions cannot be supported because they
are not TCP-friendly. However, only experience will tell
whether XTCP can fulfill its twin goals of supporting a
large fraction of useful transport extensions while guar-
anteeing host and network safety.

Finally, we may explore the granularity of extensions.
Currently, we ship TCP implementations in their entirety.
This model provides complete flexibility, avoids feature
interaction, is simple, and appears practical, given the
observed modest code sizes. Fine-grained, composable
TCP extensions would reduce the size of transported
code and host memory consumption, but could lead to
a less flexible extension model. There is substantial re-
lated work that could be leveraged to explore modularly
composable extensions, e.g., Prolac [28] and FoxNet [9].
However, simple may win.
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